
Sarah Kate Sweeney BTYSTE 2016

Page 1

Stand number _________

An investigation into the simulation of musical

instrument timbres by Short Time Discrete Fourier

Analysis.

Sarah Kate Sweeney

Scoil Mhuire Gan Smál

Blarney

County Cork

Sarah Kate Sweeney BTYSTE 2016

Page 2

Judges’ notes
__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Sarah Kate Sweeney BTYSTE 2016

Page 3

Table of Contents
Contents
Judges’ notes ... 2

Table of Contents .. 3

Acronyms .. 5

Table of Figures ... 5

1. Meet Sarah .. 6

2. Summary ... 7

2.1 Objective ... 7

2.2 Methodology ... 7

2.3 Results Summary ... 8

2.4 Application .. 9

3. Introduction .. 10

4. Background Research .. 11

4.1 The Sine Wave ... 11

4.2 Digital Signal Processing (DSP) .. 13

4.2.1 Pulse Code Modulation .. 13

4.2.2 Nyquist-Shannon Sampling Theorem .. 14

4.3 Fourier Analysis ... 15

4.3.1 Understanding Harmonics and the Fourier series ... 15

4.3.2 Discrete Fourier Transform .. 16

4.3.3 Inverse Discrete Fourier Transform ... 17

4.3.4 Simplified Synthesis Function .. 18

4.3.4 Correlation ... 19

4.4 Musical Scales ... 21

4.5 Chords and Circle of Fifths .. 22

4.7 Claude Shannon and Information Theory ... 24

4.8 Synthesis ... 25

5. Experiment Programs ... 26

5.1 Python and Complex Numbers ... 26

5.2 FFT Analysis of Square Wave .. 26

5.3 Synthesis of a Square Wave .. 26

5.4 Reading a wav file ... 27

5.5 Creating a Spectrogram .. 27

5.6 Dictionary into a JSON object ... 28

Sarah Kate Sweeney BTYSTE 2016

Page 4

5.7 Outputting Data to a .wav file ... 28

5.8 DFT and iDFT ... 28

6. Experimental Methods .. 29

6.1 Recording Reference Notes .. 29

6.1.1 Piano .. 29

6.1.2 Guitar ... 29

6.1.3 Ukulele ... 29

6.1.4 Recorder ... 29

6.2 Analysing Reference Notes ... 29

6.3 Synthesising Music .. 30

6.4 Slap Removal ... 31

7. Results ... 33

7.1 Phase 1 .. 33

7.2 Phase 2 .. 34

7.3 Phase 3 .. 34

8. Conclusions ... 35

8.2 General Conclusions .. 35

8.2 What I Learned .. 35

8.2 Further Work ... 36

8.2.1 Overview .. 36

8.2.2 Developing MJSON ... 36

9. Acknowledgements ... 36

10. References .. 37

Appendices .. 38

A.1 Experiment001- Python and Complex Numbers .. 38

A.2 Experiment002- FFT Analysis of a square wave ... 39

A.3 Experiment003- Synthesis of a square wave .. 41

A.4 Experiment004- Reading a .wav file ... 43

A.5 Experiment005- Creating a spectrogram.. 44

A.6 Experiment006- JSON object .. 45

A.7 Experiment007- Outputting Data to a .wav file.. 46

A.8 Experiment008- DFT and IDFT .. 47

A.9 Analysis Program ... 49

A.10 Synthesis Program .. 52

A.11 Reference Notes.. 55

Sarah Kate Sweeney BTYSTE 2016

Page 5

Acronyms
CIT Cork Institute of Technology

CSM Cork School of Music

CSS Cascading Style Sheets

DFT Discrete Fourier Transform

DSP Digital Signal Processing

iDFT inverse Discrete Fourier Transform

FFT Fast (discrete) Fourier Transform

HTML Hyper Text Markup Language

JSON JavaScript Object Notation

MJON Music JavaScript Object Notation

MML Music Markup Language

PCM Pulse Code Modulation

STDFT Short Time Discrete Fourier Transform

XML Extensible Markup anguage

Table of Figures
Figure 1 Recording notes at CSM ... 6

Figure 2 Methodology Flowchart ... 7

Figure 3 Sine wave and the unit circle .. 11

Figure 4 Tacoma Bridge .. 12

Figure 5 Pulse Code Modulation ... 13

Figure 6 Nyquist Shannon Sampling Theorem .. 14

Figure 7 Correlation .. 19

Figure 8 Fourier transform explaining correlation .. 20

Figure 9 Circle of Fifths ... 22

Figure 10 DSP Process ... 24

Figure 11 Spectrogram .. 27

Figure 12 Example of Slap .. 31

Figure 13 Slap Elimination .. 32

Figure 14 Synthesised Notes ... 33

Figure 15 Synthesised Tune .. 33

Figure 16 Ode To Joy .. 34

Figure 17 Reference Note Summary .. 55

Figure 18 Reference Note Detail ... 58

file:///C:/Users/Jerry/Desktop/SciFest/report22.docx%23_Toc439792829
file:///C:/Users/Jerry/Desktop/SciFest/report22.docx%23_Toc439792830
file:///C:/Users/Jerry/Desktop/SciFest/report22.docx%23_Toc439792836

Sarah Kate Sweeney BTYSTE 2016

Page 6

1. Meet Sarah

Hi! My name is Sarah Kate Sweeney. My favourite school subjects are music, maths and

science. I study piano and musicianship at the CIT School of Music. For three years now, I

attend and mentor at CoderDojo where I learn Python, Minecraft hacking, Hyper Text

Markup Language (HTML), JavaScript, Cascading Style Sheets (CSS) and JSON. In 2015 I

represented my school or dojo in eight science fairs.

I really love this project, Maths behind Music, because it combines all my favourite hobbies;

music, maths, science and coding!

Figure 1 Recording notes at CSM

Sarah Kate Sweeney BTYSTE 2016

Page 7

2. Summary

2.1 Objective
The primary objective of this project is to understand why different musical instruments

sound different even when playing the same note. The secondary objective is to use these

findings to compactly encode musical scores and to build a software synthesiser to render

such scores.

2.2 Methodology

Figure 2 Methodology Flowchart

I recorded 285 reference notes on a piano (stringed percussion), ukulele (stringed plucked),

guitar (string strummed) and recorder (woodwind) into .wav files (Appendix A11).

I wrote a Python program (analyse.py) that performed a short time discrete Fourier transform

(STDFT) on these reference notes and extracted the amplitudes of the fundamental and 19

harmonics in each window of 100ms (Appendix A9). These amplitude coefficients were

stored in JSON files.

I developed a JSON format for musical scores. I developed a Python program (odetojoy.py)

that produced a JSON file of OdeToJoy.json by Beethoven in this format.

I wrote a Python program (synth.py) to generate musical output using the Fourier coefficients

created by analyse.py and OdeToJoy.json musical score (Appendix A10).

Sarah Kate Sweeney BTYSTE 2016

Page 8

2.3 Results Summary
The penultimate result for this project is the synthesis of “OdeToJoy” by Beethoven. You

can listen to this piece of synthesised music at the following URL…

http://coderdojo.cix.ie/BTYSTE2016

This piece of music uses four different instrument for each of the four motifs and uses a

closed lid piano for the left hand accompaniment. This piece of music demonstrates the

achievement of the project objectives.

There are a number of other less important results outputs. These can also be reached from

hyperlinks via the above hyperlink.

 In August 2015, I used the recording studios in the Cork School of Music (CSM) to

record 285 reference notes for detailed analysis.

 I developed a suite of eight Python experiments / techniques that were useful in

analysis and synthesis. Chapter 5 of this report outlines these experiments in detail.

 I developed a working analysis program (analyse.py) that outputs the harmonic

amplitudes in JavaScript Object Notation (JSON).

 I developed a synthesis program to interpret the JSON and output a .wav file.

 I have created a JSON document that encodes ‘Ode to Joy’ by Beethoven using the

MJSON format I designed.

 I have a website containing some of the .wav files I produced (Ref 001).

http://coderdojo.cix.ie/BTYSTE2016

Sarah Kate Sweeney BTYSTE 2016

Page 9

2.4 Application
My project is looking at digital real sound synthesis, replacing sampling with mathematical

simulation. This allows interaction between the synthesiser and say a game application. It is

likely that this form of synthesis will become more important with time in both the music and

movie industries.

Interactive synthesis of sounds (musical and non-musical) has applications in the game

market. The game market is now larger than either the movie or music industries.

Sarah Kate Sweeney BTYSTE 2016

Page 10

3. Introduction
Music is my number one interest. My main instrument is piano but I also play recorder, guitar

and ukulele. As well as playing, I love to study musicianship and music theory. I have

attended CoderDojo for three years and this has also given me an interest in technology and

coding. My school, Scoil Mhuire Gan Smál, has a long tradition of doing science projects and

Mr. Foley has given me great encouragement and help.

I plan to have a musical career. However, in the twenty first century it seems that music

production and technology are colliding. Modern laptops that run software such as “Logic” or

“FL Studios” have more capability than existed in recording studios a mere twenty years ago.

My brother, Cian, is a musician and recently completed an MA in sound production at the

University of Westminster. In December 2014, he published a paper that outlines the

mathematical basis for musical scales. His paper started me thinking on the mathematical

basis of music. All of his work is based on simple multiplication and I was delighted to find

that I could understand all of what he has written (Ref 002).

My Dad is an electronics engineer and he has studied a lot of complicated mathematics used

in signal analysis. He is helping me to understand some of this. For this project, I use Fourier

analysis and this requires doing Fourier transforms from the time domain to the frequency

domain. Initially I couldn’t do this type of mathematics but he explained the ideas

qualitatively. Across the summer I began to understand the maths. Correlation, the underlying

digital signal processing (DSP) concept, can be understood by imagining a mechanical

Fourier transform made from the harp inside a piano. I now have discrete Fourier transform

(DFT), inverse discrete Fourier transform (iDFT) software and a simplified synthesis

program.

Thankfully I inherited my Mom’s musical ear. My Dad is tone deaf!

I feel that this project has helped me to understand the link between technology and music.

What is more, this is only the first stage. I plan to continue this work for the rest of my

secondary education in parallel with my piano and musicianship classes. It is my intention to

learn as much as I can about the mathematics of digital signal processing, sound and music.

After I leave school, I hope to obtain a doctorate in this area of music and technology.

As both a coder and a musician, the idea of being able to program music really excites me.

Music JSON, or MJSON, could be used in instrumentals, backing tracks, and is ideal for

games. In such an application, the tempo or the instruments timbre could be changed within

the game. It can also be used as a form of musical documentation. A page of MJSON is be

very small when compared to a sound file, and would therefore be ideal for transmission to a

mobile device. MJSON is formatted in JSON rather than XML. People have coded musical

cores in XML previously but I couldn’t find examples of coding music in JSON.

I am hoping to continue this work for the rest of my secondary education with a view to

understanding how music can be faithfully recreated mathematically and develop a program

that would convert backwards and forwards between MJSON and other musical score

formats such as LilyPond and MIDI. The work to date will form the basis for this. I would

also like to expand my work to include the synthesis of sounds that are not musical. This has

applications normally implemented by ‘Foley Artists’ in movies and radio.

Sarah Kate Sweeney BTYSTE 2016

Page 11

4. Background Research

4.1 The Sine Wave
Sound is a longitudinal pressure wave moving through air. The name for the shape of this

pressure wave is a sine wave. Sine is defined in trigonometry as the ratio of the opposite over

the hypotenuse. I calculated the sine of a number of angles from zero to 720 degrees (0 to 4

Pi radians) in a spreadsheet and plotted the graph. My Dad explained the relationship to

trigonometry, to me, using the unit circle drawing below. The associated Excel table below

shows the sine function being calculated and these values are plotted in the Excel chart. For

example sin 300 is 0.5.

Degrees Radians Sin Degrees Radians Sin

0 0 0 360 6.283185307 0

30 0.523598776 0.5 390 6.806784083 0.5

60 1.047197551 0.866 420 7.330382858 0.866

90 1.570796327 1 450 7.853981634 1

120 2.094395102 0.866 480 8.37758041 0.866

150 2.617993878 0.5 510 8.901179185 0.5

180 3.141592654 0 540 9.424777961 0

210 3.665191429 -0.5 570 9.948376736 -0.5

240 4.188790205 -0.866 600 10.47197551 -0.866

270 4.71238898 -1 630 10.99557429 -1

300 5.235987756 -0.866 660 11.51917306 -0.866

330 5.759586532 -0.5 690 12.04277184 -0.5

360 6.283185307 0 720 12.56637061 0

Figure 3 Sine wave and the unit circle

Sarah Kate Sweeney BTYSTE 2016

Page 12

In the Python programs developed for this project and in the spreadsheet above I needed to

use radians. 1800 = Pi radians.

Because a lot of my research related to Fourier series. I needed to understand the sine wave

before I could understand Fourier series.

My Dad claims that all engineering problems fall into two categories: to make things oscillate

correctly and to stop things oscillating. This project is about making things oscillate correctly.

The Tacoma Bridge is an infamous example of something oscillating that shouldn’t (Ref

008).

This bridge had a natural resonant frequency of 0.2Hz. A certain steady velocity of wind had

a similar effect on the bridge, as wind on the reed of a woodwind instrument. Therefore, the

bridge began to oscillate at its resonant frequency. Its amplitude kept increasing until the

bridge collapsed. This took about an hour.

Figure 4 Tacoma Bridge

Sarah Kate Sweeney BTYSTE 2016

Page 13

4.2 Digital Signal Processing (DSP)
DSP is how computers process signals. DSP is processing analog signals (e.g. a vibrating air

molecule) as a series of numbers, what we call a digital signal.

4.2.1 Pulse Code Modulation
Pulse Code Modulation (PCM) is a standard technique for representing sound signals

digitally (Ref 003, page 2). The following diagram taken from electronicshub.org explains

the concept of PCM visually.

Figure 5 Pulse Code Modulation

First, the analog signal must be sampled in such a way that the shape of the samples is

approximately the same shape as the original waveform. These sample points can then be

given values according to their vertical position in the waveform. These values can be stored

digitally in a computer.

The Wav file format is the most common non compressed digital storage file format and is

the format I use in this project. Standard Wav uses a sample rate of 44,100Hz and a vertical

resolution of 16 bits (-32,768 to +32,867) on two stereo channels.

Sarah Kate Sweeney BTYSTE 2016

Page 14

4.2.2 Nyquist-Shannon Sampling Theorem
The Nyquist-Shannon Sampling Theorem is a vital part of DSP. It states that the sample rate

has to be greater than double the highest frequency component in a signal. In the following

diagram I illustrate the consequence of not following this rule.

Figure 6 Nyquist Shannon Sampling Theorem

Using a Moiré Pattern, which is a visual form of alias, this shows what happens if the

sampling rate is too low. As the samples are too sparse, they create a lower frequency, or an

alias. Nyquist Shannon must be taken into account if this is to be avoided.

Sarah Kate Sweeney BTYSTE 2016

Page 15

4.3 Fourier Analysis

4.3.1 Understanding Harmonics and the Fourier series

For the first phase of my project, I did not know any of the maths behind Fourier Analysis,

but I had a good understanding of the concept. From June 2015 I started to seriously study

Fourier analysis mathematically.

Before SciFest CIT, my Dad showed me was how to play a note on a piano without pressing

the key by using resonance. I remember being really surprised by that. This proved that one

note contained the frequency of another. If you hold a note until it gets quiet and then

strongly but briefly press the note one octave down, you will hear the note that is down being

played. We repeated this on a swing. He showed me that even small pushes at any integer

multiple of the natural frequency of the swing caused the amplitude to grow but irregular

pushes caused nothing except annoying wobbles.

I watched the YouTube videos of Anna-Maria Hefele (Ref 004). Anna-Maria is an overtone

singer. This means she is able to create cavities using her mouth which match the resonant

frequency of the harmonic and amplifies it. This gives an illusion of singing two notes at a

time. The two notes must be integer harmonics of each other. Anna-Maria and I are doing the

same thing; the difference being that I use instruments, she uses her voice. Please note that on

her videos what she refers to as an overtone I call a harmonic.

During the summer, my Dad and I imagined how we could make a physical Fourier transform

machine by cutting the front off our piano and attaching a microphone to each string. If we

tuned the strings with 200Hz intervals we would have a mechanical Fourier transform that

would have 88 linear buckets from 200 Hz to 17.6kHz.

Sarah Kate Sweeney BTYSTE 2016

Page 16

4.3.2 Discrete Fourier Transform
When I was in SciFest CIT, I had a good qualitative understanding of how Fourier Analysis

works, but I knew very little about the background mathematics. Across the summer of 2015,

I worked to gain a quantitative understanding of Fourier Analysis. The following is the

formula used to perform a DFT:

The above formula translates into the snippet of Python code below.

 The outer ‘for loop’ computes each F(k)

 The inner ‘for loop’ performs the sigma by successively adding terms to Ftemp.

 f(n) contains the recording we want to analyse.

 N is the total number of samples in the signal f(n)

 F(k) ends up containing the complex Fourier coefficients (each F(k) is called a

bucket).

 F = []
 N = len(f)
 for k in range(0, N):
 Ftemp = 0
 for n in range(0, N):
 Ftemp += (f[n] * math.cos(2*n*math.pi*k/N)) -
 (1j*f[n] * math.sin(2*n*math.pi*k/N))
 F.append(Ftemp)

An understanding of correlation is required to understand Fourier Transforms, section 4.3.4

gives a detailed explanation of correlation.

Please note that even though I wrote my own Fourier Transform, it ran too slowly to be

useful for the large volumes of data I needed to process. In the Analysis software I wrote I

use the Numpy Standard Python library. This implements the faster Cooley Tuckey method

which I have not studied.

Sarah Kate Sweeney BTYSTE 2016

Page 17

4.3.3 Inverse Discrete Fourier Transform

The following is the formula used to perform an iDFT.

The above formula translates into the snippet of Python code below.

 The outer ‘for loop’ computes each f(n)

 The inner ‘for loop’ performs the sigma by successively adding terms to ftemp

 F(k) contains the complex Fourier coefficients, each F(k) is called a bucket

 f(n) contains the time domain signal we want to synthesise

 f = []
 N = len(F)
 for n in range(0, N):
 ftemp = 0
 for k in range(0, N):
 ftemp += (F[k].real * math.cos(2*n*math.pi*k/N)) -
(F[k].imag * math.sin(2*n*math.pi*k/N))
 f.append(round(ftemp/N))

Sarah Kate Sweeney BTYSTE 2016

Page 18

4.3.4 Simplified Synthesis Function
Fourier analysis applies to all signals, not just audio. Since I am using only audio, I can make

three simplifications to the DFT :

1. a0 is the offset component. In audio, this always equals 0, so for my purposes it can be

ignored.

2. According to the Nyquist-Shannon sampling theorem, components from N/2 to N – 1 are

all aliases and should be ignored if filtered correctly.

3. Because phase shift is inaudible a general amplitude coefficient, An can be computed as

follows for each harmonic:

Bringing these three points together yields the following simplified Fourier Series for audio:

The Fourier Series is in effect an iDFT.

Sarah Kate Sweeney BTYSTE 2016

Page 19

4.3.4 Correlation
4.3.4.1 How It Works

Fourier series says that any signal is made up of a fundamental and integer multiple

harmonics. A Fourier Transform is a technique for finding the amplitudes of these harmonics.

Correlation is the backbone of the Fourier Transform. It is what Fourier uses to find out what

frequencies are contained in a signal, and their amplitudes. Fourier Series tells us what the

frequencies are and we use correlation to find how much of each is in the signal.

 The following chart shows a square wave (the signal we want to analyse) and four sinusoids

(sin wt, cos wt, sin 2wt, cos 2wt) that we are going to correlate against. Correlation finds the

‘degree of match’ between the signal and the comparison sinusoids.

The amazing thing is that correlation (degree of match) is calculated by simply adding

together each value of the signal multiplied by the value of the correlating signal at the same

time.

Figure 7 Correlation

The graph above was created in Excel from data calculated in Excel in the table on the next

page.

Sin wt correlates very well with the square wave and Cos wt does not. The first term of the

Fourier Series (the fundamental) of the waveform is 10.05 + j0.

There is no correlation between either Sin 2wt or Cos 2wt and the signal so the second term is

0 + j0.

Similarly the third term is 2.99 + j0.

Sarah Kate Sweeney BTYSTE 2016

Page 20

Figure 8 Fourier transform explaining correlation

Sarah Kate Sweeney BTYSTE 2016

Page 21

4.4 Musical Scales
I am very interested in music theory. This section outlines the ideas I learned during my

studies, especially from Ref 002 and Ref 004.

An octave consists of twelve equal semitones, in modern equal temperament tuning. There

are tuning schemes other than equal temperament. These are used in traditional music,

sometimes jazz music, and in specific cultures. It is often stated that pentatonic scales(Ref

009) are more natural that equal temperament. Since the early 1700s, all formal western

music has been in equal temperament scales. The big advantage of equal temperament is that

if a musician meets a singer that requires a key change there is no need to retune the

instrument as all keys are interchangeable in equal temperament. This is vital for church

organs and keyboard instruments in general.

Equal temperament can be represented by the following formula where X can be solved to

1.0594630944. This number X represents the difference in frequency between any two

adjacent keys on a piano regardless of whether they are black or white.

X12 = 2

I used the spreadsheet below to iteratively find the value of X. I kept adjusting X until A6

was exactly 1,760Hz. The value I got for X was 1.0594630944.

X to the power of the note Note Frequency(Hz)

1 A 880

1.0594830944 A# 932.32752303

1.1224620483 B 987.76660249

1.189207115 C 1046.5022612

1.2599210499 C# 1108.7305239

1.3348398541 D 1174.6590716

1.4142135623 D# 1244.5079348

1.4983070768 E 1318.5102276

1.587401519 F 1396.9129256

1.6817928304 F# 1479.9776907

1.7817974361 G 1567.9817438

1.8877486252 G# 1661.1287902

2 A 1760

As you can see, the first note is exactly half of the last note. This is called an octave. All

scales use octaves that double in frequency. Because X is a constant (semitone) between two

notes, we call this a chromatic scale. Not all scales are chromatic. For example pentatonic

scales are not chromatic.

Sarah Kate Sweeney BTYSTE 2016

Page 22

4.5 Chords and Circle of Fifths
Consonant chords are based on integer ratios. The simplest such ratio is the perfect fifth (also

called the ‘power chord’ in rock music) which represents a ratio of 1.5. The difficulty is that

no integer power of 1.5 (fifths) and integer power of 2 (octaves) coincide. It is impossible to

have a chromatic scale that has a perfect octave and a perfect fifth.

1.512 = 129.746

Notice in the table above that E forms an almost perfect fifth with A (the ratio being

1.4983070768 instead of 1.5). In a piano, this approximation to a fifth is equivalent to seven

semitones. Octaves are perfectly tuned and fifths are approximately tuned to fit in with

octaves. The following equality shows that in seven octaves you get twelve fifths by using the

ratio 1.4983070768.

2 7 = 128 = 1.498307076812 12

The reason there are twelve semitones in an octave is because the 'Circle of Fifths' rotates

twelve times before returning to the starting note. On each rotation it lands on a different note

in the octave.

Figure 9 Circle of Fifths

Every music theory student learns about the Circle of Fifths but few understand the

mathematical basis beneath it.

When equal temperament tuning was developed, the instrument tuners were faced with a

choice: the perfect fifth, or the perfect octave? They chose the perfect octave, but in doing a

‘perfect’ fifth is not actually perfect. A true perfect fifth is 1.5 times the original note, but in

Sarah Kate Sweeney BTYSTE 2016

Page 23

equal temperament it is only 1.4983070768. This is the reason many musicians are distressed

when they hear that the ‘perfect’ fifth is, ironically, imperfect.

Occasionally arpeggio singers abandon the perfect octave in favour of the perfect fifth.

Most pentatonic scales do have true perfect fifths and perfect octaves but they are not

chromatic.

Sarah Kate Sweeney BTYSTE 2016

Page 24

4.7 Claude Shannon and Information Theory
In the late 1940s Claude Shannon developed what

he referred to as “Information Theory”. This

branch of mathematics/physics laid the basis for

long distance communications and the digital

world we take for granted today. His research

covered areas such as noise and data loss in analog

and digital systems as well as data compression

and encryption. I tried to understand some of his

ideas and to interpret my project using those ideas.

(Ref 003)

The pressure of air at a point in space and time can

take any value. All of the analysis done in this

project is performed by a digital computer. The

microphone in my computer is an analog device. It

turns the sound pressure wave into an electronic

analog. The computer digitises the sound pressure

waves, turning them into numbers. After

processing the computer turns them back into

analog signals which are turned back into pressure

waves to enable the sound to be heard.

In my project I am using wav files for storing and

processing digital signals. Wav files are based on

the CD format developed around 1980. This

format allows for 16 bit amplitude resolution and a

sampling rate of 44,100 samples per second.

According to Shannon's information theory this

sample rate is capable of being used to reproduce

frequencies up to 22,050Hz which is just above

human ability to hear. The 16 bit amplitude allows

for +- 32,767 which again exceeds human ability

to distinguish sound levels.

Wav files record amplitude linearly and not

logarithmically (i.e. not in dBs).

For my initial experimentation I used the microphone and A/D converter in my laptop. When

I went to record the tune in the second part of my project I used an external professional

microphone and audio amplifier and the quality was far superior. The signal to noise ratio

was 15dB better with the professional recording equipment.

Figure 10 DSP Process

Sarah Kate Sweeney BTYSTE 2016

Page 25

4.8 Synthesis
There are four phases so far in the evolution of digital synthesis. Music (and sound)

electronic synthesis is entering the fourth phase of its evolution (Ref 003).

Phase 1: Analog Modular Synthesis

Initially synthesis was based on analog modular systems such as the Moog Synthesisers of

the 1970s. Although Analog Synthesisers are no longer in commercial production the ideas

are incorporated in modern digital synthesisers products like ‘Pure Data’.

Phase 2: Digital Synthesisers

In the 1980s, electronic bands (such as Kraftwerk) added pure digital synthesis. These

instruments produced the electronic sounds of that era. No attempt was made to simulate

traditional instruments.

Phase 3: Sampling

Mike Oldfield’s Tubular Bells in the early 1980s is a masterpiece of digital synthesis but it

also started to add samples of real instruments. Today, synthesisers such as “Garage Band”

and its big brother ‘Logic’ use sampling to synthesise real instruments. They even use

sampling to recreate the sounds of synthesisers that were originally digital.

Phase 4: Interactive Digital Real Sound Synthesis

My project is looking at digital real sound synthesis, replacing sampling with mathematical

simulation. This allows interaction between the synthesiser and say a game application. It is

likely that this form of synthesis will become more important with time in both the music and

movie industries.

Sarah Kate Sweeney BTYSTE 2016

Page 26

5. Experiment Programs
Before I could take the project to a level beyond what I had done for SciFest@CIT, I needed

to understand the maths behind Fourier Analysis and I needed to develop my coding skills. I

spent most of the summer reading about the topic and practicing my Python coding. I did this

work in the form of eight experiments. This chapter outlines those experiments.

5.1 Python and Complex Numbers
See appendix A.1 for code.

Experiment one deals with how Python handles complex numbers and proves that complex

multiplication yields a rotation.

An angle theta (θ in the Greek alphabet) is assigned a value of pi over 6 radians, or 30

degrees. The program is the asked to find the sin and cos of theta. The variable 'a' is then

declared cos of theta and j times the sin of theta. This is a complex number. When

multiplying complex numbers, the rule is to graph this on an argand diagram, then add the

angles and multiply the lengths. This results in an angle of 2 pi over 6 radians, or 60 degrees.

This is a larger angle, proving that complex multiplication yeilds a rotation.

5.2 FFT Analysis of Square Wave
See reference A.2 for code.

Experiment two uses numpy, an import from Python, to perform an FFT. It proves that a0 is

always equal to 0 for a function centered on the x axis.

It first is given a signal of [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1] (a square wave),

performs an FFT and then calculates the absolute value of these results and plots them in a

graph.

The reason it calculates the absolute value of the FFT output is due to the fact that an FFT

yields a complex number. The real component represents the frequency amplitude, and the

imaginary component represents the offset. However, it is unnecessary to account for offset

in audio as the human ear is not sensitive to it.

Second, it is given a signal = [2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0] (another square wave)

and performs an FFT on the signal, calculates the absolute values and plots it in a graph as it

did the first.

If you look at the results, you will notice that all coefficients in the entire first column equal

0. These are what I call the 'a0' coefficients. They are what determines the offset of a signal.

If the signal is centered on the x axis in the graph, a0 will always equal 0.

5.3 Synthesis of a Square Wave
See appendix A.3 for code.

Experiment three is the first experiment to create an audible .wav file. It's main purpose

however, is to prove that phase shift is inaudible to the human ear. It does this by creating

two almost identical square waves. One has phase shift and one does not. In the waveform

graphs drawn using matplotlib, the two look completely different. However, when the .wav

files are played they sound identical. This indirectly proves that the human ear is Fourier

Transform.

Sarah Kate Sweeney BTYSTE 2016

Page 27

5.4 Reading a wav file
See Appendix A.4 for code.

This tool does what is says on the tin. It imports an existing wav file, analyses it, and prints

out the first five stereo values.

5.5 Creating a Spectrogram
See Appendix A.5 for code.

A spectrogram is a visual representation of how a frequency spectrum changes over time. I

use them for sound, but they can be used for any signal. This tool creates and displays a

spectrogram using the Python library matplotlib. This code generates a spectrogram of a

single piano note.

A Spectrogram is like a sliced pan, where each slice is a spectrum for that window.

Figure 11 Spectrogram

Sarah Kate Sweeney BTYSTE 2016

Page 28

5.6 Dictionary into a JSON object
See Appendix A.6 for code.

This experiment puts a dictionary into a JSON object then reads it back into a dictionary. I

needed a way to store both amplitude coefficients and musical scores on my computer.

Within a Python program this data can be stored as a dictionary. A JSON object is similar to

a Python dictionary but it has the advantage that it can be stored as a file on a computer hard

drive for use by another computer.

5.7 Outputting Data to a .wav file
See Appendix A.7 for code.

This experiments creates a functional wav file. This program outputs a square wave to a way

file.

5.8 DFT and iDFT
See Appendix A.8 for code.

The purpose of this experiment was to prove that for any signal (even, odd, or neither even

nor odd) a DFT followed by an iDFT would yield the original signal. This proved that the

transforms are reversible.

This code was developed from first principles and the fft functionality in numpy was not

used.

Sarah Kate Sweeney BTYSTE 2016

Page 29

6. Experimental Methods

6.1 Recording Reference Notes
For this third phase of the project, I was allowed the use of a music studio in the Cork School

of Music with a Steinway piano and professional grade recording equipment. I brought a

ukulele, guitar and recorder. I recorded multiple notes per instrument to ensure that at there

will be 'good' notes for analysis among the odd 'dud' ones.

In total I now have a library of 288 reference notes.

6.1.1 Piano
I recorded the piano notes on a grand piano. I noticed that when I played with the lid closed,

it sounded different than with the lid open. I was curious to know how the harmonics changed

from open to closed lid, and so recorded both.

I recorded every note on the keyboard for both (88 notes * 2 lid positions).

6.1.2 Guitar
There are six strings on a guitar: Low E, A, D, G, B and high E. I recorded one octave (12

semitones) per string.

6.1.3 Ukulele
There are four strings on a ukulele: A, C, E and G. I recorded 8 notes per string.

6.1.4 Recorder
I recorded a C major scale on the recorder consisting of 8 notes.

6.2 Analysing Reference Notes
See Appendix A.9 for code.

I have developed a program, called analyse.py, to perform a short time discrete Fourier

transform (STDFT) analysis on my recorded reference musical notes. An FFT performed on a

signal divided into windows is called an STDFT. The algorithm of analyse.py is as follows:

 Loops through instruments.

 Loops through notes.

 Loops through windows.

 Performs a FFT on each window.

 Finds the absolute value of the amplitude coefficients.

 Saves the coefficients to a JSON file.

Sarah Kate Sweeney BTYSTE 2016

Page 30

6.3 Synthesising Music
I have developed a program, called synth.py, which uses the coefficients generated in

analyse.py to create orchestral multi instrument music from a JSON file. The algorithm of

synth.py is as follows:

 Reads the JSON score for the song.

 Creates two empty lists that will contain the left and right stereo channels. Make these

10ms longer than the last note in the song to allow for slap elimination.

 Loop on each note.

 Loop on each window.

 Calculate window_start and window_end for slap elimination.

 Loop on each sample.

 Loop on each harmonic.

 Calculate sigma An * sine (2 * pi * f * t) and store for that sample.

 All loops end here.

 Add some left to right and vice versa for headphone usage.

 Save the lists to the wav file.

Sarah Kate Sweeney BTYSTE 2016

Page 31

6.4 Slap Removal
One of the main problems I faced with synthesis was one that I called ‘Slap’. This was an

annoying click between windows. The following drawing shows a comparison between a

window transition at 2.6 seconds on the Ode To Joy music.

In the upper signal the wave transitions smoothly from window to the next. In the lower

signal there is a sudden transition and hence a slap in the waveform that is clearly audible.

Figure 12 Example of Slap

Slap occurs when a window ends in a different place to where the next begins. The result is

what looks like a vertical line. This line requires an infinite amount of energy for the speaker

to play it, so it creates a ‘slap’ in the speaker.

I have eliminated slap by making the amplitude coefficients ‘ramp up’ for 10ms at the start of

every window, continue on for the 100ms window, and overlap into the next window for

10ms to ‘ramp down’, while the next note is ramping up.

The code to fix this is…

If the window is starting then ramp in over 10ms

if sample < (start_window + 441):

 signal *= ((sample - start_window) / float(441))

If the window is ending then ramp out over 10ms

if sample > (end_window - 441):

 signal *= ((end_window - sample) / float(441))

Note: 441 samples = 10ms

Sarah Kate Sweeney BTYSTE 2016

Page 32

The following diagram explains slap and its solution.

Figure 13 Slap Elimination

The red line added to the blue line, during the window transition, gives the green line. The green line

is a smooth transition between windows.

Sarah Kate Sweeney BTYSTE 2016

Page 33

7. Results
The sound file results and software code of this project are available at this URL.

http://coderdojo.cix.ie/BTYSTE2016

7.1 Phase 1
In the first phase of this project I analysed A5 on three different musical instruments. I then

synthesised those notes and achieved a reasonable likeness.

Figure 14 Synthesised Notes

I also synthesised a 32 note tune using extrapolated harmonics. This tune is an original

composition designed to use every note in an octave, at least once.

Figure 15 Synthesised Tune

http://coderdojo.cix.ie/BTYSTE2016

Sarah Kate Sweeney BTYSTE 2016

Page 34

There were a number of problems that needed to be addresses with the results from phase 1.

1 There were 16 harmonics x 2 seconds x 10 windows per note. This required 320

coefficients to be collected per note or 960 coefficients in total for three notes. This

took at least two full days of tedious work.

2. The harmonic coefficients were collected from Audacity and were of low resolution.

3. There was a ‘slap’ audible between windows.

4. Because a ready-made piece of software, Audacity, was used to do the analysis I did

not have a deep understanding of the mathematical process behind the analysis.

Clearly these problems needed to be addressed in future work.

7.2 Phase 2

The output of Phase 2 is a series of eight experimental programs that supplied the toolset

necessary to deal with the deficiencies identified in Phase 1. These programs are described in

Chapter 5 of this report.

7.3 Phase 3
For the third phase of this project, I have written my own software for analysis and synthesis.

I used these programs to synthesize Beethoven’s ‘Ode To Joy’. I chose ‘Ode To Joy’ because

it has four distinct motifs, one for each instrument, it is well known and has a simple melody.

The piano open has the first motif, the guitar has the second, the recorder has the third and the

ukulele has the fourth. The piano closed plays the accompaniment all the way through.

Figure 16 Ode To Joy

Sarah Kate Sweeney BTYSTE 2016

Page 35

8. Conclusions

8.2 General Conclusions
From this project, I conclude that it is possible to reproduce musical instrument timbre using Short

Time Discrete Fourier Analysis. This means that music can be stored and transmitted in files that are

perhaps 1,000 smaller that the equivalent .wav file. More importantly the music can be modified by

the device playing the software. For example a user could pick the instruments or the software could

change the tempo at a critical part of a game.

8.2 What I Learned
During this project I have learned a lot about many different things. Here are a few of them:

 How timbre works; from both a musical and scientific perspective.

 Mathematics; geometry and complex numbers mainly.

 Python programming, JSON and web development in HTML.

 The physics of sound.

 Sine waves and Fourier analysis.

 Information Theory including noise and analog and digital signals.

 Musical theory, especially in scales and fifths.

 Report writing.

 Presentation skills.

This project has taught me a lot about music from a scientific perspective, one I would not

have seen before. I now understand why instruments sound the way they do, and why a

perfect fifth is not perfect. I have also improved my coding skills in Python. Many of the life

lessons I learned cannot be taught in a classroom. I strongly believe that this project has

improved not only my science aptitude, but I am also a better coder, musician and

mathematician as a result.

Sarah Kate Sweeney BTYSTE 2016

Page 36

8.2 Further Work
8.2.1 Overview

I have decided that I am going to continue to study the subject matter of technology and

music for the rest of my secondary education. This project is phase 2 of that study. The

eventual objective is to develop a coding language called Music Markup Language (MML)

that one could code music in the same way one can easily code a website in HTML. This is

useful for instrumentals or backing tracks, and very useful for games as one could change the

music tempo or timbre in sync with the game action. All of this would be imbedded into the

code for the game. An MML file would be tiny compared to the size of an mp3 or a wav file

that it could generate. This would be very useful to reduce the bandwidth required for playing

online games.

8.2.2 Developing MJSON
At present, this project belongs in the Chemical, Physical and Mathematical Sciences in most

Irish science fairs. However, when I begin to develop MML, it will switch to the Technology

category. Sometime in the near future, I plan to develop MML from the ground up.

9. Acknowledgements
I would like to thank following people:

 Mr. Foley, my science teacher and Mr. Richard O Shea, a former BTYS winner for

helping me prepare for BTYSTE 2016.

 Mr. Hugh McCarthy, for allowing me to use the recording studio at Cork School of

Music and for lending me his books.

 My parents, Karen and Jerry. My Dad spent weeks teaching me Python and Fourier

Analysis across the summer and helped me hugely with programming.

 My brother, Cian for all of the advice and my sister Bláthnaid, who helped set up my

stand at SciFest.

Sarah Kate Sweeney BTYSTE 2016

Page 37

10. References

(Ref 001) A webpage containing all of the sound files I produced.

http://coderdojo.cix.ie/BTYSTE2016

(Ref 002) My brother, Cian Sweeney’s research paper that was the starting point for my

project.

http://coderdojo.cix.ie/SciFest2015/ResearchPaper_CianSweeney_w1517148.pdf

(Ref 003) Cook, Perry R. (2002) “Real sound synthesis for interactive applications”. A K

Peters LTD.

(Ref 004) Anna-Maria Hefele overtone singing.

https://www.youtube.com/watch?v=UHTF1-IhuC0&feature=youtu.be

(Ref 005) Duffin, Ross W. (2008)“How equal temperament ruined harmony (and why you

should care)”.

 (Ref 005) Levitin, Daniel J. (2007) “This is your brain on music”. Penguin Group.

(Ref 006) Angus, James, Howard, David M. (2007) “Acoustics and phychoacoustics”.

Penguin Group.

 (Ref 007) A series of YouTube videos explaining Information Theory.

https://www.youtube.com/watch?v=p0ASFxKS9sg&feature=youtu.be

(Ref 008) Tacoma Oscillating Bridge

https://www.youtube.com/watch?v=3mclp9QmCGs&feature=youtu.be

(Ref 009) Bobby McFerrin: Power of the Pentatonic Scale

https://www.youtube.com/watch?v=fsO53ydK-yA&feature=youtu.be

http://coderdojo.cix.ie/SciFest2015/ResearchPaper_CianSweeney_w1517148.pdf
https://www.youtube.com/watch?v=UHTF1-IhuC0&feature=youtu.be
https://www.youtube.com/watch?v=p0ASFxKS9sg&feature=youtu.be
https://www.youtube.com/watch?v=3mclp9QmCGs&feature=youtu.be
https://www.youtube.com/watch?v=fsO53ydK-yA&feature=youtu.be

Sarah Kate Sweeney BTYSTE 2016

Page 38

Appendices

A.1 Experiment001- Python and Complex Numbers

Experiment 1: Revision Date: Sun, 5 Jul 2015

How Python handles Complex Numbers.

Proving that Complex multiplication yields a rotation.

Sarah Kate Sweeney

import math

theta = math.pi/6

sin_theta = math.sin(theta)

cos_theta = math.cos(theta)

print theta, cos_theta, sin_theta

a = cos_theta + 1j*sin_theta

print a

a *= a

print a

Results

0.523598775598 0.866025403784 0.5

(0.866025403784+0.5j)

(0.5+0.866025403784j)

Since the Cos of 30 degrees = Sin of 60 degrees

and the Sin of 30 degrees = Cos of 60 degrees

this proves that a squared is a rotation.

Sarah Kate Sweeney BTYSTE 2016

Page 39

A.2 Experiment002- FFT Analysis of a square wave

Experiment 2: Revision Date: Sun 25 Oct 2015

Using numpy to do an FFT.

Proving that a0 is 0 for a function centered on x axis.

Sarah Kate Sweeney

import numpy.fft as np

from pylab import plot, show, subplot, specgram

signal = [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1]

F = np.fft(signal)

print F

print

print abs(F)

subplot(411)

plot(signal)

subplot(412)

plot(abs(F))

signal = [2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0]

F = np.fft(signal)

print F

print abs(F)

subplot(413)

plot(signal)

subplot(414)

plot(abs(F))

show()

###

Results:

The Complex Fourier Coefficients of a square Wave from 1 to -1

[0. +0.j 2.-10.05467898j 0. +0.j 2. -2.99321153j

0. +0.j 2. -1.33635728j 0. +0.j 2. -0.39782473j

0. +0.j 2. +0.39782473j 0. +0.j 2. +1.33635728j

0. +0.j 2. +2.99321153j 0. +0.j 2.+10.05467898j]

The Absolute Value Fourier Coefficients of a square Wave from 1 to -1

[0. 10.25166179 0. 3.59990489

0. 2.40537955 0. 2.03918232

0. 2.03918232 0. 2.40537955

0. 3.59990489 0. 10.25166179]

The Complex Fourier Coefficients of a square Wave from 2 to 0

[16. +0.j 2.-10.05467898j 0. +0.j 2. -2.99321153j

Sarah Kate Sweeney BTYSTE 2016

Page 40

0. +0.j 2. -1.33635728j 0. +0.j 2. -0.39782473j

0. +0.j 2. +0.39782473j 0. +0.j 2. +1.33635728j

0. +0.j 2. +2.99321153j 0. +0.j 2.+10.05467898j]

The Absolute Value Fourier Coefficients of a square Wave from 2 to 0

[16. 10.25166179 0. 3.59990489

0. 2.40537955 0. 2.03918232

0. 2.03918232 0. 2.40537955

0. 3.59990489 0. 10.25166179]

Sarah Kate Sweeney BTYSTE 2016

Page 41

A.3 Experiment003- Synthesis of a square wave

Experiment 3: Revision Date: Sun 25 Oct 2015

Create audible .wav files.

Proving that phase shift is inaudible

Sarah Kate Sweeney

import math

from pylab import plot, show, subplot, specgram

import wave

import struct

f = 440 # Frequency A4

w = 2.0 * math.pi * f # Angular Velocity

a1 = math.sqrt(1.0/(2.0 * 1.0 * 1.0)) # Fundamental real

b1 = a1 # Fundamental imaginary pi/4

r1 = abs(a1 + 1j * b1)

a3 = math.sqrt(1.0/(2.0 * 3.0 * 3.0)) # Third harmonic real

b3 = a3 # Third harmonic imaginary pi/4

r3 = abs(a3 + 1j * b3)

a5 = math.sqrt(1.0/(2.0 * 5.0 * 5.0)) # Fifth harmonic real

b5 = a5 # Fifth harmonic imaginary pi/4

r5 = abs(a5 + 1j * b5)

a7 = math.sqrt(1.0/(2.0 * 7.0 * 7.0)) # Seventh harmonic real

b7 = a7 # Seventh harmonic imaginary pi/4

r7 = abs(a7 + 1j * b7)

X = []

Xshort = []

Y = []

Yshort = []

Open wav file

music_output = wave.open('experiment003.wav', 'w')

music_output.setparams((2, 2, 44100, 0, 'NONE', 'not compressed'))

For loop to add up squiggly wave

for sample in range(0, 44100):

 t = sample/44100.00

 y = (a1*math.sin(w*t) + b1*math.cos(w*t)) + (a3*math.sin(3*w*t) +

b3*math.cos(3*w*t)) + (a5*math.sin(5*w*t) + \

 b5*math.cos(5*w*t)) + (a7*math.sin(7*w*t) + b7*math.cos(7*w*t))

 X.append(t)

 Y.append(y)

 if sample < 500:

 Xshort.append(t)

 Yshort.append(y)

 y=int(y*10000)

 #Process wav file

 packed_value = struct.pack('h', y)

 music_output.writeframes(packed_value)

 music_output.writeframes(packed_value)

subplot(211)

plot(Xshort,Yshort)

Sarah Kate Sweeney BTYSTE 2016

Page 42

X = []

Xshort = []

Y = []

Yshort = []

for sample in range (0,44100):

 packed_value = struct.pack('h', 0)

 music_output.writeframes(packed_value)

 music_output.writeframes(packed_value)

For loop to add up square wave

for sample in range(0, 44100):

 t = sample/44100.00

 y = (r1*math.sin(w*t)) + (r3*math.sin(3*w*t)) + (r5*math.sin(5*w*t)) +

(r7*math.sin(7*w*t))

 X.append(t)

 Y.append(y)

 if sample < 500:

 Xshort.append(t)

 Yshort.append(y)

 y=int(y*10000)

 #Process wav file

 packed_value = struct.pack('h', y)

 music_output.writeframes(packed_value)

 music_output.writeframes(packed_value)

music_output.close()

Plot and display graph

subplot(212)

plot(Xshort, Yshort)

show()

Sarah Kate Sweeney BTYSTE 2016

Page 43

A.4 Experiment004- Reading a .wav file

Experiment 4: Revision Date: Sun 25 Oct 2015

Reading a wav file

Sarah Kate Sweeney

import scipy.io.wavfile as wavfile

rate,data=wavfile.read('recorder.wav')

print data[:5]

print rate

Results

The first 5 stereo values from the wav file

[[0 0]

[3731 3731]

[6493 6493]

[8400 8400]

[9997 9997]]

Sample Rate

44100

Sarah Kate Sweeney BTYSTE 2016

Page 44

A.5 Experiment005- Creating a spectrogram

Experiment 5: Revision Date: Sun 25 Oct 2015

Creating a spectrogram.

To compare a real and synthesised note.

Sarah Kate Sweeney

from scipy.io.wavfile import read, write

from pylab import plot, show, subplot, specgram

rate, datastereo = read('results.wav') # reading

data = [0] * (len(datastereo))

data = [0] * 60000

for n in range (60000):

 data[n] = datastereo[n, 0] * 2

subplot(311)

plot(range(len(data)), data)

NFFT is the number of data points used in each block for the FFT

and noverlap is the number of points of overlap between blocks

subplot(312)

specgram(data, NFFT=512, noverlap=0)

subplot(313)

specgram(data, NFFT=1024, noverlap=0)

show()

Sarah Kate Sweeney BTYSTE 2016

Page 45

A.6 Experiment006- JSON object

Experiment 006 Date 2nd Dec 2015

Puts a dict into a JSON object then reads it back into a dict

import json

before_dict = {'noteA': {0: 22000, 1: 16000, 2: 12000},

 'noteB': {0: 20000, 1: 14000, 2: 11000}}

print before_dict

json_data = json.dumps(before_dict)

print json_data

after_dict = json.loads(json_data)

print after_dict

print after_dict['noteB']

print after_dict['noteB']['1']

{'noteA': {0: 22000, 1: 16000, 2: 12000}, 'noteB': {0: 20000, 1: 14000,

2: 11000}}

{"noteA": {"0": 22000, "1": 16000, "2": 12000}, "noteB": {"0": 20000,

"1": 14000, "2": 11000}}

{u'noteA': {u'1': 16000, u'0': 22000, u'2': 12000}, u'noteB': {u'1':

14000, u'0': 20000, u'2': 11000}}

{u'1': 14000, u'0': 20000, u'2': 11000}

14000

Sarah Kate Sweeney BTYSTE 2016

Page 46

A.7 Experiment007- Outputting Data to a .wav file

Experiment 7 November 12th 2015

Export WAV file

import wave

import struct

Open wav file

music_output = wave.open('experiment007.wav', 'w')

music_output.setparams((2, 2, 44100, 0, 'NONE', 'not compressed'))

Frequency = 44,100 / 24 = 1.8375 kHz

signal = [10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,

10000, 10000, 10000,

 -10000, -10000, -10000, -10000, -10000, -10000, -10000, -10000, -

10000, -10000, -10000, -10000]

10,000 cycles = 5.44 seconds

signal *= 10000

Process wav file

for i in range(0, len(signal)):

 packed_value = struct.pack('h', signal[i])

 music_output.writeframes(packed_value)

 music_output.writeframes(packed_value)

music_output.close()

Sarah Kate Sweeney BTYSTE 2016

Page 47

A.8 Experiment008- DFT and IDFT

Experiment 008 Revision Date: Sun 25 Oct 2015

Perform an FT

Sarah Kate Sweeney

import math

import numpy.fft

def dft(f_in):

 F_in = []

 N = len(f_in)

 for k in range(0, N):

 Ftemp = 0

 for n in range(0, N):

 Ftemp += (f_in[n] * math.cos(2*n*math.pi*k/N)) - (1j*f_in[n] *

math.sin(2*n*math.pi*k/N))

 F_in.append(Ftemp)

 return F_in

def idft(F_in):

 f_in = []

 N = len(F_in)

 for n in range(0, N):

 ftemp = 0

 for k in range(0, N):

 ftemp += (F_in[k].real * math.cos(2*n*math.pi*k/N)) -

(F_in[k].imag * math.sin(2*n*math.pi*k/N))

 f_in.append(round(ftemp/N))

 return f_in

f = [0, 5, -2, 4, 3, 8, 3, 3, 0, -3, -3, -3, -3, -4, -5, 2, 7]

F = dft(f)

nF = numpy.fft.fft(f)

print len(f), f

print len(F), F

print len(nF), nF

f = idft(F)

print len(f), f

Sarah Kate Sweeney BTYSTE 2016

Page 48

Results:

17 [0, 5, -2, 4, 3, 8, 3, 3, 0, -3, -3, -3, -3, -4, -5, 2, 7]

17 [(12+0j), (12.232264386303726-30.687369918596566j),

(3.405212375849918+14.87833871961477j),

(12.851192352366573+11.058421190976881j),

(0.46007610144805644+7.715389988173088j), (-7.575664743143951-

0.993300929005895j),

(-8.189744000238928-0.6935734094248822j), (-4.2088892346013544-

9.822734337956419j),

(-14.974447237984048-7.290448671589815j), (-

14.974447237984048+7.290448671589817j),

(-4.20888923460146+9.822734337956376j), (-

8.189744000238864+0.693573409424725j),

(-7.575664743143901+0.993300929005847j), (0.46007610144800215-

7.715389988173072j),

(12.851192352366615-11.058421190976851j), (3.4052123758500445-

14.878338719614746j),

(12.232264386303658+30.687369918596595j)]

17 [12.00000000 +0.j 12.23226439-30.68736992j

3.40521238+14.87833872j 12.85119235+11.05842119j

0.46007610 +7.71538999j -7.57566474 -0.99330093j

-8.18974400 -0.69357341j -4.20888923 -9.82273434j

-14.97444724 -7.29044867j -14.97444724 +7.29044867j

-4.20888923 +9.82273434j -8.18974400 +0.69357341j

-7.57566474 +0.99330093j 0.46007610 -7.71538999j

12.85119235-11.05842119j 3.40521238-14.87833872j

12.23226439+30.68736992j]

17 [0.0, 5.0, -2.0, 4.0, 3.0, 8.0, 3.0, 3.0, 0.0, -3.0, -3.0, -3.0, -3.0,

-4.0, -5.0, 2.0, 7.0]

Sarah Kate Sweeney BTYSTE 2016

Page 49

A.9 Analysis Program

Analyse: Revision Date: Sun 20 Dec 2015

Analysing the imported signal.

import scipy.io.wavfile as wavfile

import numpy.fft as np

import json

samples = 441000 # Samples per note

notes = 88 # Number of notes to collect

windows = 100 # 100 Windows in the sample

resolution = 10 # Gap between buckets in Hz

harmonics = 20 # Number of harmonics to collect

harmonic_calculate (Harmonic Calculator

Returns the freq of a particular harmonic for a particular note

Returns frequency for 88 (0 to 87) notes and 20 (fundamental and 19)

harmonics

The resolution is the separation between buckets 100ms window = 10Hz

separation

The frequency is rounded to the nearest bucket

Def is a function that can be called later.

def frequency_rounded(note, harmonic):

 fundamental = 27.5 * 1.0594630944 ** note

 frequency = fundamental * (harmonic+1)

 answer = resolution * int((frequency + (resolution/2))/resolution)

 return answer

def note_analyse():

 for w in range(0, windows):

 # First get the Fourier transform of the window.

 F = np.fft(data[n * 441000 + w * 4410: (n * 441000 + (w + 1) *

4410)])

 # Remove the complex numbers by getting the absolute value.

 Fabs = abs(F)

Sarah Kate Sweeney BTYSTE 2016

Page 50

 # Now get the amplitude of the fundamental and harmonics

 hardata = {}

 for h in range(0, harmonics):

 bucketf = frequency_rounded(n + start_offset, h)

 if bucketf > 18000:

use amplitude 0 for Shannon Nyquist cutoff

 hardata["harmonic{0}".format(h)] = 0

 else:

 amplitude = Fabs[bucketf/resolution]

 # Allow for tuning variability by looking for local maximum

within 2% of the frequency

 delta = int((bucketf * 0.02)/10)

 for d in range(-delta, delta):

 if Fabs[d + bucketf/resolution] > amplitude:

 amplitude = Fabs[d + bucketf/resolution]

 hardata["harmonic{0}".format(h)] = amplitude

 windata["window{0}".format(w)] = hardata

End of function declarations, program starts here.

Analyse each instrument separately within the loop

instruments = [

 ["../ReferenceNotes/pianoOpen.wav", 88, 0,

"../Coefficients/pianoOpen.json"],

 ["../ReferenceNotes/pianoClosed.wav", 88, 0,

"../Coefficients/pianoClosed.json"],

 ["../ReferenceNotes/guitarA.wav", 13, 23,

"../Coefficients/guitarA.json"],

 ["../ReferenceNotes/guitarB.wav", 12, 25,

"../Coefficients/guitarB.json"],

 ["../ReferenceNotes/guitarD.wav", 12, 13,

"../Coefficients/guitarD.json"],

 ["../ReferenceNotes/guitarG.wav", 12, 45,

"../Coefficients/guitarG.json"],

 ["../ReferenceNotes/guitarHighE.wav", 12, 54,

"../Coefficients/guitarHighE.json"],

 ["../ReferenceNotes/guitarLowE.wav", 12, 30,

"../Coefficients/guitarLowE.json"],

 ["../ReferenceNotes/recorder.wav", 13, 50,

"../Coefficients/recorder.json"],

 ["../ReferenceNotes/ukulele.wav", 23, 45,

"../Coefficients/ukulele.json"]

]

Sarah Kate Sweeney BTYSTE 2016

Page 51

for i in range(len(instruments)):

 # gather the variables

 instrument = instruments[i]

 notedata = {}

 input_wav = instrument[0]

 note_count = instrument[1]

 start_offset = instrument[2]

 output_json = instrument[3]

 # read the Reference Notes

 rate, data = wavfile.read(instrument[0])

 for n in range(1, note_count + 1):

 windata = {}

 note_analyse()

 notedata["note{0}".format(n + start_offset)] = windata

 # save the Fourier Coefficients to json file

 with open(output_json, 'w') as outfile:

 json.dump(notedata, outfile)

Sarah Kate Sweeney BTYSTE 2016

Page 52

A.10 Synthesis Program

Synth : Revision Date: Sat 22 Dec 2015

Synthesising Music.

import json

import wave

import math

import struct

harmonics = 20

harmonic_amplitudes = [[0 for harmonic in range(harmonics)] for window in

range(100)]

def get_harmonic_amplitudes():

 if instrument == 'pianoOpen':

 data = open('../Coefficients/pianoOpen.json', 'r')

 elif instrument == "pianoClosed":

 data = open('../Coefficients/pianoClosed.json', 'r')

 elif instrument == "guitarA":

 data = open('../Coefficients/guitarA.json', 'r')

 elif instrument == "guitarB":

 data = open('../Coefficients/guitarB.json', 'r')

 elif instrument == "guitarD":

 data = open('../Coefficients/guitarD.json', 'r')

 elif instrument == "guitarG":

 data = open('../Coefficients/guitarG.json', 'r')

 elif instrument == "guitarHighE":

 data = open('../Coefficients/guitarHighE.json', 'r')

 elif instrument == "guitarLowE":

 data = open('../Coefficients/guitarLowE.json', 'r')

 elif instrument == "recorder":

 data = open('../Coefficients/recorder.json', 'r')

 elif instrument == "ukulele":

 data = open('../Coefficients/ukulele.json', 'r')

 else:

 data = open('../Coefficients/pianoOpen.json', 'r')

 json_data = data.read()

 instrument_data = json.loads(json_data)

 nte_data = instrument_data["note{0}".format(note)]

Sarah Kate Sweeney BTYSTE 2016

Page 53

 for win in range(0, 100):

 for har in range(0, harmonics):

 win_data = nte_data["window{0}".format(win)]

 har_data = win_data["harmonic{0}".format(har)]

 harmonic_amplitudes[win][har] = har_data

 return harmonic_amplitudes

Read the song to be synthesised

song_file = open('../SheetMusic/music.json', 'r')

song_json = song_file.read()

song_score = json.loads(song_json)

Find the length of the song

note_count, song_length = 0, 0

for each_note in song_score:

 print each_note, note_count, song_length

 note_data = song_score["note{0}".format(note_count)]

 if note_data["end"] > song_length:

 song_length = note_data["end"]

 note_count += 1

print note_count, "notes ", song_length / 100, "seconds"

Set all samples in the wav file to zero

song_left = []

song_right = []

for i in range((song_length * 441) + 441): # Extra 10ms for slap tail

 song_left.append(0)

 song_right.append(0)

Process notes one by one

for n in range(0, note_count):

 note_data = song_score["note{0}".format(n)]

 note = note_data["note"]

 instrument = note_data["instrument"]

 loudness = note_data["loudness"]

 start_note = note_data["start"] * 441

 end_note = note_data["end"] * 441

 channel = note_data["channel"]

 get_harmonic_amplitudes()

 note_end = 0

 for w in range(0, int((end_note - start_note)/4410)):

 print "Note ", n, "Window ", w

 start_window = start_note + w * 4410 # Used to create

tail to elimenate slap

 end_window = start_note + (w + 1) * 4410 + 441 # Used to create

tail to elimenate slap

 for h in range(0, harmonics):

 frequency = int((27.5 * 1.0594630944 ** note) * (h + 1))

Sarah Kate Sweeney BTYSTE 2016

Page 54

 f2pi = frequency * 2 * math.pi # Omega = 2 * Pi *

f

 for sample in range(start_window, end_window):

 t = sample / float(44100)

 signal = int(math.sin(f2pi * t) * loudness *

harmonic_amplitudes[w][h])

 # If the window is starting then ramp in over 10ms

 if sample < (start_window + 441):

 signal *= ((sample - start_window) / float(441))

 # If the window is ending then ramp out over 10ms

 if sample > (end_window - 441):

 signal *= ((end_window - sample) / float(441))

 if channel == "left":

 song_left[sample] += signal

 else:

 song_right[sample] += signal

Find the scaling factor to prevent clipping

absolute_max = 0

for i in range(0, song_length * 441):

 if abs(song_left[i]) > absolute_max:

 absolute_max = abs(song_left[i])

 if abs(song_right[i]) > absolute_max:

 absolute_max = abs(song_right[i])

scale = absolute_max / 28000 # wav = 2**16 = +- 2**15 = -32,768 to

+ 32,767

print "Absolute Maximum ", absolute_max, " Scale ", scale

Save the wav file to disk

music_output = wave.open('../SynthMusic/music.wav', 'w')

music_output.setparams((2, 2, 44100, 0, 'NONE', 'not compressed'))

for i in range(0, song_length * 441):

 # Mix a bit of the left with right and visa versa for headphone usage

 value_left = int(song_left[i] / scale) + int((song_right[i] / scale) *

0.05)

 value_right = int(song_right[i] / scale) + int((song_left[i] / scale) *

0.05)

 packed_value_right = struct.pack('h', value_right)

 packed_value_left = struct.pack('h', value_left)

 music_output.writeframes(packed_value_right)

 music_output.writeframes(packed_value_left)

music_output.close()

Sarah Kate Sweeney BTYSTE 2016

Page 55

A.11 Reference Notes

Using a high quality microphone in an acoustic studio at Cork School of Music, I recorded 285

reference notes for harmonic analysis using a discrete Fourier Transform.

Instrument Note Count

Piano Lid Open 88

Piano Lid Closed 88

Guitar 78

Ukulele 23

Recorder 8

Total 285
Figure 17 Reference Note Summary

Sarah Kate Sweeney BTYSTE 2016

Page 56

Note Freq PiOp PiCl GuLE GuA GuB GuD GuG GuHE Ukul Recor

0 A1 27.5 Yes Yes

1 As1/Bf1 29.135 Yes Yes

2 B1 30.868 Yes Yes

3 C1 32.703 Yes Yes

4 Cs1/Df1 34.648 Yes Yes

5 D1 36.708 Yes Yes

6 Ds1/Ef1 38.891 Yes Yes

7 E1 41.203 Yes Yes

8 F1 43.654 Yes Yes

9 Fs1/Gf1 46.249 Yes Yes

10 G1 48.999 Yes Yes

11 Gs1/Af2 51.913 Yes Yes

12 A2 55 Yes Yes

13 As2/Bf2 58.27 Yes Yes

14 B2 61.735 Yes Yes

15 C2 65.406 Yes Yes

16 Cs2/Df2 69.296 Yes Yes

17 D2 73.416 Yes Yes

18 Ds2/Ef2 77.782 Yes Yes

19 E2 82.407 Yes Yes

20 F2 87.307 Yes Yes

21 Fs2/Gf2 92.499 Yes Yes

22 G2 97.999 Yes Yes

23 Gs2/Af3 103.83 Yes Yes

24 A3 110 Yes Yes Yes

25 As3/Bf3 116.54 Yes Yes Yes

26 B3 123.47 Yes Yes Yes

27 C3 130.81 Yes Yes Yes

28 Cs3/Df3 138.59 Yes Yes Yes

29 D3 146.83 Yes Yes Yes

30 Ds3/Ef3 155.56 Yes Yes Yes

31 E3 164.81 Yes Yes Yes Yes

32 F3 174.61 Yes Yes Yes Yes

33 Fs3/Gf3 185 Yes Yes Yes Yes

34 G3 196 Yes Yes Yes Yes

Sarah Kate Sweeney BTYSTE 2016

Page 57

35 Gs3/Af4 207.65 Yes Yes Yes Yes

36 A4 220 Yes Yes Yes Yes

37 As4/Bf4 233.08 Yes Yes Yes

38 B4 246.94 Yes Yes Yes Yes

39 C4 261.63 Yes Yes Yes Yes

40 Cs4/Df4 277.18 Yes Yes Yes Yes

41 D4 293.67 Yes Yes Yes Yes Yes

42 Ds4/Ef4 311.13 Yes Yes Yes Yes Yes

43 E4 329.63 Yes Yes Yes Yes Yes

44 F4 349.23 Yes Yes Yes Yes

45 Fs4/Gf4 369.99 Yes Yes Yes Yes

46 G4 392.00 Yes Yes Yes Yes Yes

47 Gs4/Af5 415.3 Yes Yes Yes Yes Yes Yes

48 A5 440 Yes Yes Yes Yes Yes Yes

49 As5/Bf5 466.16 Yes Yes Yes Yes Yes Yes

50 B5 493.88 Yes Yes Yes Yes Yes Yes

51 C5 523.25 Yes Yes Yes Yes Yes Yes

52 Cs5/Df5 554.37 Yes Yes Yes Yes Yes Blank

53 D5 587.33 Yes Yes Yes Yes Yes Yes

54 Ds5/Ef5 622.25 Yes Yes Yes Yes Blank

55 E5 659.26 Yes Yes Yes Yes Yes Yes

56 F5 698.46 Yes Yes Yes Yes Yes Yes

57 Fs5/Gf5 739.99 Yes Yes Yes Yes Yes Blank

58 G5 783.99 Yes Yes Yes Yes Yes Yes

59 Gs5/Af6 830.61 Yes Yes Yes Yes Blank

60 A6 880 Yes Yes Yes Yes Yes

61 As6/Bf6 932.33 Yes Yes Yes Yes Blank

62 B6 987.77 Yes Yes Yes Yes Yes

63 C6 1046.5 Yes Yes Yes Yes Yes

64 Cs6/Df6 1108.7 Yes Yes Yes Yes

65 D6 1174.7 Yes Yes Yes Yes

66 Ds6/Ef6 1244.5 Yes Yes Yes Yes

67 E6 1318.5 Yes Yes Yes Yes

68 F6 1396.9 Yes Yes Yes

69 Fs6/Gf6 1480 Yes Yes Yes

70 G6 1568 Yes Yes

Sarah Kate Sweeney BTYSTE 2016

Page 58

71 Gs6/Af7 1661.2 Yes Yes

72 A7 1760 Yes Yes

73 As7/Bf7 1864.7 Yes Yes

74 B7 1975.5 Yes Yes

75 C7 2093 Yes Yes

76 Cs7/Df7 2217.5 Yes Yes

77 D7 2349.3 Yes Yes

78 Ds7/Ef7 2489 Yes Yes

79 E7 2637 Yes Yes

80 F7 2793 Yes Yes

81 Fs7/Gf7 2960 Yes Yes

82 G7 3136 Yes Yes

83 Gs7/Af8 3324.4 Yes Yes

84 A8 3520 Yes Yes

85 As8/Bf8 3729.3 Yes Yes

86 B8 3951.1 Yes Yes

87 C8 4186 Yes Yes

Figure 18 Reference Note Detail

