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1. Meet Sarah 
 

Hi! My name is Sarah Kate Sweeney. My favourite school subjects are music, maths and 

science. I study piano and musicianship at the CIT School of Music. For three years now, I 

attend and mentor at CoderDojo where I learn Python, Minecraft hacking, Hyper Text 

Markup Language (HTML), JavaScript, Cascading Style Sheets (CSS) and JSON. In 2015 I 

represented my school or dojo in eight science fairs. 

I really love this project, Maths behind Music, because it combines all my favourite hobbies; 

music, maths, science and coding! 

 

 

Figure 1  Recording notes at CSM 
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2. Summary 

2.1 Objective 
The primary objective of this project is to understand why different musical instruments 

sound different even when playing the same note. The secondary objective is to use these 

findings to compactly encode musical scores and to build a software synthesiser to render 

such scores. 

2.2 Methodology 
 

 

Figure 2  Methodology Flowchart 

I recorded 285 reference notes on a piano (stringed percussion), ukulele (stringed plucked), 

guitar (string strummed) and recorder (woodwind) into .wav files (Appendix A11).  

I wrote a Python program (analyse.py) that performed a short time discrete Fourier transform 

(STDFT) on these reference notes and extracted the amplitudes of the fundamental and 19 

harmonics in each window of 100ms (Appendix A9). These amplitude coefficients were 

stored in JSON files. 

I developed a JSON format for musical scores. I developed a Python program (odetojoy.py) 

that produced a JSON file of OdeToJoy.json by Beethoven in this format. 

I wrote a Python program (synth.py) to generate musical output using the Fourier coefficients 

created by analyse.py and OdeToJoy.json musical score (Appendix A10).   
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2.3 Results Summary 
The penultimate result for this project is the synthesis  of “OdeToJoy” by Beethoven. You 

can listen to this piece of synthesised music at the following URL… 

http://coderdojo.cix.ie/BTYSTE2016 

This piece of music uses four different instrument for each of the four motifs and uses a 

closed lid piano for the left hand accompaniment. This piece of music demonstrates the 

achievement of the project objectives. 

There are a number of other less important results outputs. These can also be reached from 

hyperlinks via the above hyperlink.  

 In August 2015, I used the recording studios in the Cork School of Music (CSM) to 

record 285 reference notes for detailed analysis.  

 I developed a suite of eight Python experiments / techniques that were useful in 

analysis and synthesis. Chapter 5 of this report outlines these experiments in detail. 

 I developed a working analysis program (analyse.py) that outputs the harmonic 

amplitudes in JavaScript Object Notation (JSON). 

 I developed a synthesis program to interpret the JSON and output a .wav file.  

 I have created a JSON document that encodes ‘Ode to Joy’ by Beethoven using the 

MJSON format I designed.  

 I have a website containing some of the .wav files I produced (Ref 001).  

http://coderdojo.cix.ie/BTYSTE2016
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2.4 Application 
My project is looking at digital real sound synthesis, replacing sampling with mathematical 

simulation. This allows interaction between the synthesiser and say a game application. It is 

likely that this form of synthesis will become more important with time in both the music and 

movie industries.  

Interactive synthesis of sounds (musical and non-musical) has applications in the game 

market. The game market is now larger than either the movie or music industries. 
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3. Introduction 
Music is my number one interest. My main instrument is piano but I also play recorder, guitar 

and ukulele. As well as playing, I love to study musicianship and music theory. I have 

attended CoderDojo for three years and this has also given me an interest in technology and 

coding. My school, Scoil Mhuire Gan Smál, has a long tradition of doing science projects and 

Mr. Foley has given me great encouragement and help. 

I plan to have a musical career. However, in the twenty first century it seems that music 

production and technology are colliding. Modern laptops that run software such as “Logic” or 

“FL Studios” have more capability than existed in recording studios a mere twenty years ago. 

My brother, Cian, is a musician and recently completed an MA in sound production at the 

University of Westminster. In December 2014, he published a paper that outlines the 

mathematical basis for musical scales. His paper started me thinking on the mathematical 

basis of music. All of his work is based on simple multiplication and I was delighted to find 

that I could understand all of what he has written (Ref 002). 

My Dad is an electronics engineer and he has studied a lot of complicated mathematics used 

in signal analysis. He is helping me to understand some of this. For this project, I use Fourier 

analysis and this requires doing Fourier transforms from the time domain to the frequency 

domain. Initially I couldn’t do this type of mathematics but he explained the ideas 

qualitatively. Across the summer I began to understand the maths. Correlation, the underlying 

digital signal processing (DSP) concept, can be understood by imagining a mechanical 

Fourier transform made from the harp inside a piano. I now have discrete Fourier transform 

(DFT), inverse discrete Fourier transform (iDFT) software and a simplified synthesis 

program. 

Thankfully I inherited my Mom’s musical ear. My Dad is tone deaf! 

I feel that this project has helped me to understand the link between technology and music. 

What is more, this is only the first stage. I plan to continue this work for the rest of my 

secondary education in parallel with my piano and musicianship classes. It is my intention to 

learn as much as I can about the mathematics of digital signal processing, sound and music. 

After I leave school, I hope to obtain a doctorate in this area of music and technology. 

As both a coder and a musician, the idea of being able to program music really excites me. 

Music JSON, or MJSON, could be used in instrumentals, backing tracks, and is ideal for 

games. In such an application, the tempo or the instruments timbre could be changed within 

the game. It can also be used as a form of musical documentation. A page of MJSON is be 

very small when compared to a sound file, and would therefore be ideal for transmission to a 

mobile device. MJSON is formatted in JSON rather than XML. People have coded musical 

cores in XML previously but I couldn’t find examples of coding music in JSON.    

I am hoping to continue this work for the rest of my secondary education with a view to 

understanding how music can be faithfully recreated mathematically and develop a program 

that would convert backwards and forwards between MJSON and other musical score 

formats such as LilyPond and MIDI. The work to date will form the basis for this. I would 

also like to expand my work to include the synthesis of sounds that are not musical. This has 

applications normally implemented by ‘Foley Artists’ in movies and radio. 
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4. Background Research 

4.1 The Sine Wave 
Sound is a longitudinal pressure wave moving through air. The name for the shape of this 

pressure wave is a sine wave. Sine is defined in trigonometry as the ratio of the opposite over 

the hypotenuse. I calculated the sine of a number of angles from zero to 720 degrees (0 to 4 

Pi radians) in a spreadsheet and plotted the graph. My Dad explained the relationship to 

trigonometry, to me, using the unit circle drawing below. The associated Excel table below 

shows the sine function being calculated and these values are plotted in the Excel chart. For 

example sin 300 is 0.5. 

Degrees Radians Sin  Degrees Radians Sin 

0 0 0  360 6.283185307 0 

30 0.523598776 0.5  390 6.806784083 0.5 

60 1.047197551 0.866  420 7.330382858 0.866 

90 1.570796327 1  450 7.853981634 1 

120 2.094395102 0.866  480 8.37758041 0.866 

150 2.617993878 0.5  510 8.901179185 0.5 

180 3.141592654 0  540 9.424777961 0 

210 3.665191429 -0.5  570 9.948376736 -0.5 

240 4.188790205 -0.866  600 10.47197551 -0.866 

270 4.71238898 -1  630 10.99557429 -1 

300 5.235987756 -0.866  660 11.51917306 -0.866 

330 5.759586532 -0.5  690 12.04277184 -0.5 

360 6.283185307 0  720 12.56637061 0 

Figure 3 Sine wave and the unit circle 
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In the Python programs developed for this project and in the spreadsheet above I needed to 

use radians. 1800 = Pi radians. 

Because a lot of my research related to Fourier series. I needed to understand the sine wave 

before I could understand Fourier series.  

My Dad claims that all engineering problems fall into two categories: to make things oscillate 

correctly and to stop things oscillating. This project is about making things oscillate correctly. 

The Tacoma Bridge is an infamous example of something oscillating that shouldn’t (Ref 

008). 

 

This bridge had a natural resonant frequency of 0.2Hz. A certain steady velocity of wind had 

a similar effect on the bridge, as wind on the reed of a woodwind instrument. Therefore, the 

bridge began to oscillate at its resonant frequency. Its amplitude kept increasing until the 

bridge collapsed. This took about an hour. 

 

  

Figure 4  Tacoma Bridge 
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4.2 Digital Signal Processing (DSP) 
DSP is how computers process signals. DSP is processing analog signals (e.g. a vibrating air 

molecule) as a series of numbers, what we call a digital signal. 

4.2.1 Pulse Code Modulation 
Pulse Code Modulation (PCM) is a standard technique for representing sound signals 

digitally (Ref 003, page 2). The following diagram taken from electronicshub.org explains 

the concept of PCM visually.  

 

Figure 5 Pulse Code Modulation 

First, the analog signal must be sampled in such a way that the shape of the samples is 

approximately the same shape as the original waveform. These sample points can then be 

given values according to their vertical position in the waveform. These values can be stored 

digitally in a computer. 

The Wav file format is the most common non compressed digital storage file format and is 

the format I use in this project. Standard Wav uses a sample rate of 44,100Hz and a vertical 

resolution of 16 bits (-32,768 to +32,867) on two stereo channels. 
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4.2.2 Nyquist-Shannon Sampling Theorem 
The Nyquist-Shannon Sampling Theorem is a vital part of DSP. It states that the sample rate 

has to be greater than double the highest frequency component in a signal. In the following 

diagram I illustrate the consequence of not following this rule. 

 

 

Figure 6 Nyquist Shannon Sampling Theorem 

Using a Moiré Pattern, which is a visual form of alias, this shows what happens if the 

sampling rate is too low. As the samples are too sparse, they create a lower frequency, or an 

alias. Nyquist Shannon must be taken into account if this is to be avoided.   
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4.3 Fourier Analysis 

4.3.1 Understanding Harmonics and the Fourier series 
 

For the first phase of my project, I did not know any of the maths behind Fourier Analysis, 

but I had a good understanding of the concept. From June 2015 I started to seriously study 

Fourier analysis mathematically. 

Before SciFest CIT, my Dad showed me was how to play a note on a piano without pressing 

the key by using resonance. I remember being really surprised by that. This proved that one 

note contained the frequency of another. If you hold a note until it gets quiet and then 

strongly but briefly press the note one octave down, you will hear the note that is down being 

played. We repeated this on a swing. He showed me that even small pushes at any integer 

multiple of the natural frequency of the swing caused the amplitude to grow but irregular 

pushes caused nothing except annoying wobbles. 

I watched the YouTube videos of Anna-Maria Hefele (Ref 004). Anna-Maria is an overtone 

singer. This means she is able to create cavities using her mouth which match the resonant 

frequency of the harmonic and amplifies it. This gives an illusion of singing two notes at a 

time. The two notes must be integer harmonics of each other. Anna-Maria and I are doing the 

same thing; the difference being that I use instruments, she uses her voice. Please note that on 

her videos what she refers to as an overtone I call a harmonic. 

During the summer, my Dad and I imagined how we could make a physical Fourier transform 

machine by cutting the front off our piano and attaching a microphone to each string. If we 

tuned the strings with 200Hz intervals we would have a mechanical Fourier transform that 

would have 88 linear buckets from 200 Hz to 17.6kHz. 
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4.3.2 Discrete Fourier Transform 
When I was in SciFest CIT, I had a good qualitative understanding of how Fourier Analysis 

works, but I knew very little about the background mathematics. Across the summer of 2015, 

I worked to gain a quantitative understanding of Fourier Analysis.  The following is the 

formula used to perform a DFT: 

 

The above formula translates into the snippet of Python code below. 

 The outer ‘for loop’ computes each F(k) 

 The inner ‘for loop’ performs the sigma by successively adding terms to Ftemp. 

 f(n) contains the recording we want to analyse. 

 N is the total number of samples in the signal f(n) 

 F(k) ends up containing the complex Fourier coefficients (each F(k) is called a 

bucket). 

 

    F = [] 
    N = len(f) 
    for k in range(0, N): 
        Ftemp = 0 
        for n in range(0, N): 
            Ftemp += (f[n] * math.cos(2*n*math.pi*k/N)) -               
          (1j*f[n] * math.sin(2*n*math.pi*k/N)) 
        F.append(Ftemp) 
 

 

 

An understanding of correlation is required to understand Fourier Transforms, section 4.3.4 

gives a detailed explanation of correlation. 

Please note that even though I wrote my own Fourier Transform, it ran too slowly to be 

useful for the large volumes of data I needed to process. In the Analysis software I wrote I 

use the Numpy Standard Python library. This implements the faster Cooley Tuckey method 

which I have not studied. 
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4.3.3 Inverse Discrete Fourier Transform 
 

The following is the formula used to perform an iDFT. 

 

The above formula translates into the snippet of Python code below. 

 The outer ‘for loop’ computes each f(n) 

 The inner ‘for loop’ performs the sigma by successively adding terms to ftemp 

 F(k) contains the complex Fourier coefficients, each F(k) is called a bucket 

 f(n) contains the time domain signal we want to synthesise 

 

    f = [] 
    N = len(F) 
    for n in range(0, N): 
        ftemp = 0 
        for k in range(0, N): 
            ftemp += (F[k].real * math.cos(2*n*math.pi*k/N)) - 
(F[k].imag * math.sin(2*n*math.pi*k/N)) 
        f.append(round(ftemp/N)) 
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4.3.4 Simplified Synthesis Function 
Fourier analysis applies to all signals, not just audio. Since I am using only audio, I can make 

three simplifications to the DFT : 

1. a0 is the offset component. In audio, this always equals 0, so for my purposes it can be 

ignored. 

2. According to the Nyquist-Shannon sampling theorem, components from N/2 to N – 1 are 

all aliases and should be ignored if filtered correctly. 

3. Because phase shift is inaudible a general amplitude coefficient, An can be computed as 

follows for each harmonic: 

 

 

Bringing these three points together yields the following simplified Fourier Series for audio: 

 

The Fourier Series is in effect an iDFT. 
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4.3.4 Correlation 
4.3.4.1 How It Works 

Fourier series says that any signal is made up of a fundamental and integer multiple 

harmonics. A Fourier Transform is a technique for finding the amplitudes of these harmonics. 

Correlation is the backbone of the Fourier Transform. It is what Fourier uses to find out what 

frequencies are contained in a signal, and their amplitudes. Fourier Series tells us what the 

frequencies are and we use correlation to find how much of each is in the signal. 

 The following chart shows a square wave (the signal we want to analyse) and four sinusoids 

(sin wt, cos wt, sin 2wt, cos 2wt) that we are going to correlate against. Correlation finds the 

‘degree of match’ between the signal and the comparison sinusoids. 

The amazing thing is that correlation (degree of match) is calculated by simply adding 

together each value of the signal multiplied by the value of the correlating signal at the same 

time. 

 

Figure 7 Correlation 

 

The graph above was created in Excel from data calculated in Excel in the table on the next 

page. 

Sin wt correlates very well with the square wave and Cos wt does not. The first term of the 

Fourier Series (the fundamental) of the waveform is 10.05 + j0. 

There is no correlation between either Sin 2wt or Cos 2wt and the signal so the second term is 

0 + j0. 

Similarly the third term is 2.99 + j0. 
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Figure 8 Fourier transform explaining correlation 
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4.4 Musical Scales 
I am very interested in music theory. This section outlines the ideas I learned during my 

studies, especially from Ref 002 and Ref 004. 

An octave consists of twelve equal semitones, in modern equal temperament tuning. There 

are tuning schemes other than equal temperament. These are used in traditional music, 

sometimes jazz music, and in specific cultures. It is often stated that pentatonic scales(Ref 

009) are more natural that equal temperament. Since the early 1700s, all formal western 

music has been in equal temperament scales. The big advantage of equal temperament is that 

if a musician meets a singer that requires a key change there is no need to retune the 

instrument as all keys are interchangeable in equal temperament. This is vital for church 

organs and keyboard instruments in general. 

Equal temperament can be represented by the following formula where X can be solved to 

1.0594630944. This number X represents the difference in frequency between any two 

adjacent keys on a piano regardless of whether they are black or white. 

X12 = 2 

I used the spreadsheet below to iteratively find the value of X. I kept adjusting X until A6 

was exactly 1,760Hz. The value I got for X was 1.0594630944. 

 

X to the power of the note Note Frequency(Hz) 

1 A 880 

1.0594830944 A# 932.32752303 

1.1224620483 B 987.76660249 

1.189207115 C 1046.5022612 

1.2599210499 C# 1108.7305239 

1.3348398541 D 1174.6590716 

1.4142135623 D# 1244.5079348 

1.4983070768 E 1318.5102276 

1.587401519 F 1396.9129256 

1.6817928304 F# 1479.9776907 

1.7817974361 G 1567.9817438 

1.8877486252 G# 1661.1287902 

2 A 1760 

 

As you can see, the first note is exactly half of the last note. This is called an octave. All 

scales use octaves that double in frequency. Because X is a constant (semitone) between two 

notes, we call this a chromatic scale. Not all scales are chromatic. For example pentatonic 

scales are not chromatic. 
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4.5 Chords and Circle of Fifths 
Consonant chords are based on integer ratios. The simplest such ratio is the perfect fifth (also 

called the ‘power chord’ in rock music) which represents a ratio of 1.5. The difficulty is that 

no integer power of 1.5 (fifths) and integer power of 2 (octaves) coincide. It is impossible to 

have a chromatic scale that has a perfect octave and a perfect fifth. 

1.512 = 129.746 

Notice in the table above that E forms an almost perfect fifth with A (the ratio being 

1.4983070768 instead of 1.5). In a piano, this approximation to a fifth is equivalent to seven 

semitones. Octaves are perfectly tuned and fifths are approximately tuned to fit in with 

octaves. The following equality shows that in seven octaves you get twelve fifths by using the 

ratio 1.4983070768. 

2 7 = 128 = 1.498307076812 12 

The reason there are twelve semitones in an octave is because the 'Circle of Fifths' rotates 

twelve times before returning to the starting note. On each rotation it lands on a different note 

in the octave. 

 

Figure 9 Circle of Fifths 

Every music theory student learns about the Circle of Fifths but few understand the 

mathematical basis beneath it. 

When equal temperament tuning was developed, the instrument tuners were faced with a 

choice: the perfect fifth, or the perfect octave? They chose the perfect octave, but in doing a 

‘perfect’ fifth is not actually perfect. A true perfect fifth is 1.5 times the original note, but in 
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equal temperament it is only 1.4983070768. This is the reason many musicians are distressed 

when they hear that the ‘perfect’ fifth is, ironically, imperfect. 

Occasionally arpeggio singers abandon the perfect octave in favour of the perfect fifth. 

Most pentatonic scales do have true perfect fifths and perfect octaves but they are not 

chromatic. 
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4.7 Claude Shannon and Information Theory 
In the late 1940s Claude Shannon developed what 

he referred to as “Information Theory”. This 

branch of mathematics/physics laid the basis for 

long distance communications and the digital 

world we take for granted today. His research 

covered areas such as noise and data loss in analog 

and digital systems as well as data compression 

and encryption. I tried to understand some of his 

ideas and to interpret my project using those ideas. 

(Ref 003) 

The pressure of air at a point in space and time can 

take any value. All of the analysis done in this 

project is performed by a digital computer. The 

microphone in my computer is an analog device. It 

turns the sound pressure wave into an electronic 

analog. The computer digitises the sound pressure 

waves, turning them into numbers. After 

processing the computer turns them back into 

analog signals which are turned back into pressure 

waves to enable the sound to be heard. 

In my project I am using wav files for storing and 

processing digital signals. Wav files are based on 

the CD format developed around 1980. This 

format allows for 16 bit amplitude resolution and a 

sampling rate of 44,100 samples per second. 

According to Shannon's information theory this 

sample rate is capable of being used to reproduce 

frequencies up to 22,050Hz which is just above 

human ability to hear. The 16 bit amplitude allows 

for +- 32,767 which again exceeds human ability 

to distinguish sound levels. 

Wav files record amplitude linearly and not 

logarithmically (i.e. not in dBs). 

For my initial experimentation I used the microphone and A/D converter in my laptop. When 

I went to record the tune in the second part of my project I used an external professional 

microphone and audio amplifier and the quality was far superior. The signal to noise ratio 

was 15dB better with the professional recording equipment. 

  

Figure 10 DSP Process 
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4.8 Synthesis 
There are four phases so far in the evolution of digital synthesis. Music (and sound) 

electronic synthesis is entering the fourth phase of its evolution (Ref 003). 

Phase 1: Analog Modular Synthesis 

Initially synthesis was based on analog modular systems such as the Moog Synthesisers of 

the 1970s. Although Analog Synthesisers are no longer in commercial production the ideas 

are incorporated in modern digital synthesisers products like ‘Pure Data’.  

Phase 2: Digital Synthesisers 

In the 1980s, electronic bands (such as Kraftwerk) added pure digital synthesis. These 

instruments produced the electronic sounds of that era. No attempt was made to simulate 

traditional instruments.  

Phase 3: Sampling 

Mike Oldfield’s Tubular Bells in the early 1980s is a masterpiece of digital synthesis but it 

also started to add samples of real instruments. Today, synthesisers such as “Garage Band” 

and its big brother ‘Logic’ use sampling to synthesise real instruments. They even use 

sampling to recreate the sounds of synthesisers that were originally digital. 

Phase 4: Interactive Digital Real Sound Synthesis 

My project is looking at digital real sound synthesis, replacing sampling with mathematical 

simulation. This allows interaction between the synthesiser and say a game application. It is 

likely that this form of synthesis will become more important with time in both the music and 

movie industries. 
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5. Experiment Programs 
Before I could take the project to a level beyond what I had done for SciFest@CIT, I needed 

to understand the maths behind Fourier Analysis and I needed to develop my coding skills. I 

spent most of the summer reading about the topic and practicing my Python coding. I did this 

work in the form of eight experiments. This chapter outlines those experiments.  

5.1 Python and Complex Numbers 
See appendix A.1 for code. 

Experiment one deals with how Python handles complex numbers and proves that complex 

multiplication yields a rotation.  

An angle theta (θ in the Greek alphabet) is assigned a value of pi over 6 radians, or 30 

degrees. The program is the asked to find the sin and cos of theta. The variable 'a' is then 

declared cos of theta and j times the sin of theta. This is a complex number. When 

multiplying complex numbers, the rule is to graph this on an argand diagram, then add the 

angles and multiply the lengths. This results in an angle of 2 pi over 6 radians, or 60 degrees. 

This is a larger angle, proving that complex multiplication yeilds a rotation. 

5.2 FFT Analysis of Square Wave 
See reference A.2 for code.  

Experiment two uses numpy, an import from Python, to perform an FFT. It proves that a0 is 

always equal to 0 for a function centered on the x axis. 

It first is given a signal of [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1] (a square wave), 

performs an FFT and then calculates the absolute value of these results and plots them in a 

graph.  

The reason it calculates the absolute value of the FFT output is due to the fact that an FFT 

yields a complex number. The real component represents the frequency amplitude, and the 

imaginary component represents the offset. However, it is unnecessary to account for offset 

in audio as the human ear is not sensitive to it. 

Second, it is given a signal = [2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0] (another square wave) 

and performs an FFT on the signal, calculates the absolute values and plots it in a graph as it 

did the first. 

If you look at the results, you will notice that all coefficients in the entire first column equal 

0. These are what I call the 'a0' coefficients. They are what determines the offset of a signal. 

If the signal is centered on the x axis in the graph, a0 will always equal 0.  

5.3 Synthesis of a Square Wave 
See appendix A.3 for code.  

Experiment three is the first experiment to create an audible .wav file. It's main purpose 

however, is to prove that phase shift is inaudible to the human ear. It does this by creating 

two almost identical square waves. One has phase shift and one does not. In the waveform 

graphs drawn using matplotlib, the two look completely different. However, when the .wav 

files are played they sound identical. This indirectly proves that the human ear is Fourier 

Transform.  
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5.4 Reading a wav file 
See Appendix A.4 for code. 

This tool does what is says on the tin. It imports an existing wav file, analyses it, and prints 

out the first five stereo values. 

 

5.5 Creating a Spectrogram 
See Appendix A.5 for code. 

A spectrogram is a visual representation of how a frequency spectrum changes over time. I 

use them for sound, but they can be used for any signal. This tool creates and displays a 

spectrogram using the Python library matplotlib. This code generates a spectrogram of a 

single piano note. 

A Spectrogram is like a sliced pan, where each slice is a spectrum for that window. 

 

Figure 11 Spectrogram 
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5.6 Dictionary into a JSON object 
See Appendix A.6 for code. 

This experiment puts a dictionary into a JSON object then reads it back into a dictionary. I 

needed a way to store both amplitude coefficients and musical scores on my computer. 

Within a Python program this data can be stored as a dictionary. A JSON object is similar to 

a Python dictionary but it has the advantage that it can be stored as a file on a computer hard 

drive for use by another computer. 

5.7 Outputting Data to a .wav file 
See Appendix A.7 for code. 

This experiments creates a functional wav file. This program outputs a square wave to a way 

file. 

5.8 DFT and iDFT 
See Appendix A.8 for code. 

The purpose of this experiment was to prove that for any signal (even, odd, or neither even 

nor odd) a DFT followed by an iDFT would yield the original signal. This proved that the 

transforms are reversible. 

This code was developed from first principles and the fft functionality in numpy was not 

used. 
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6. Experimental Methods 

6.1 Recording Reference Notes 
For this third phase of the project, I was allowed the use of a music studio in the Cork School 

of Music with a Steinway piano and professional grade recording equipment. I brought a 

ukulele, guitar and recorder. I recorded multiple notes per instrument to ensure that at there 

will be 'good' notes for analysis among the odd 'dud' ones. 

In total I now have a library of 288 reference notes. 

6.1.1 Piano 
I recorded the piano notes on a grand piano. I noticed that when I played with the lid closed, 

it sounded different than with the lid open. I was curious to know how the harmonics changed 

from open to closed lid, and so recorded both.  

I recorded every note on the keyboard for both (88 notes * 2 lid positions).  

6.1.2 Guitar 
There are six strings on a guitar: Low E, A, D, G, B and high E. I recorded one octave (12 

semitones) per string.  

6.1.3 Ukulele 
There are four strings on a ukulele: A, C, E and G. I recorded 8 notes per string.  

6.1.4 Recorder 
I recorded a C major scale on the recorder consisting of 8 notes. 

 

6.2 Analysing Reference Notes 
See Appendix A.9 for code. 

I have developed a program, called analyse.py, to perform a short time discrete Fourier 

transform (STDFT) analysis on my recorded reference musical notes. An FFT performed on a 

signal divided into windows is called an STDFT. The algorithm of analyse.py is as follows: 

 Loops through instruments. 

 Loops through notes. 

 Loops through windows. 

 Performs a FFT on each window. 

 Finds the absolute value of the amplitude coefficients. 

 Saves the coefficients to a JSON file. 
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6.3 Synthesising Music 
I have developed a program, called synth.py, which uses the coefficients generated in 

analyse.py to create orchestral multi instrument music from a JSON file.  The algorithm of 

synth.py is as follows: 

 

 Reads the JSON score for the song. 

 Creates two empty lists that will contain the left and right stereo channels. Make these 

10ms longer than the last note in the song to allow for slap elimination. 

 Loop on each note. 

 Loop on each window. 

 Calculate window_start and window_end for slap elimination. 

 Loop on each sample. 

 Loop on each harmonic. 

 Calculate sigma An * sine (2 * pi * f * t) and store for that sample. 

 All loops end here. 

  Add some left to right and vice versa for headphone usage. 

 Save the lists to the wav file. 
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6.4 Slap Removal 
One of the main problems I faced with synthesis was one that I called ‘Slap’. This was an 

annoying click between windows. The following drawing shows a comparison between a 

window transition at 2.6 seconds on the Ode To Joy music. 

In the upper signal the wave transitions smoothly from window to the next. In the lower 

signal there is a sudden transition and hence a slap in the waveform that is clearly audible.   

 

 

Figure 12  Example of Slap 

Slap occurs when a window ends in a different place to where the next begins. The result is 

what looks like a vertical line. This line requires an infinite amount of energy for the speaker 

to play it, so it creates a ‘slap’ in the speaker. 

I have eliminated slap by making the amplitude coefficients ‘ramp up’ for 10ms at the start of 

every window, continue on for the 100ms window, and overlap into the next window for 

10ms to ‘ramp down’, while the next note is ramping up. 

The code to fix this is… 

 

# If the window is starting then ramp in over 10ms 

if sample < (start_window + 441): 

       signal *= ((sample - start_window) / float(441)) 

 

# If the window is ending then ramp out over 10ms 

if sample > (end_window - 441): 

        signal *= ((end_window - sample) / float(441)) 

 

Note: 441 samples = 10ms 
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The following diagram explains slap and its solution.  

 

Figure 13  Slap Elimination 

 

The red line added to the blue line, during the window transition, gives the green line. The green line 

is a smooth transition between windows.  
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7. Results 
The sound file results and software code of this project are available at this URL. 

http://coderdojo.cix.ie/BTYSTE2016 

7.1 Phase 1 
In the first phase of this project I analysed A5 on three different musical instruments. I then 

synthesised those notes and achieved a reasonable likeness. 

 

Figure 14 Synthesised Notes 

I also synthesised a 32 note tune using extrapolated harmonics. This tune is an original 

composition designed to use every note in an octave, at least once. 

 

Figure 15 Synthesised Tune 

  

http://coderdojo.cix.ie/BTYSTE2016
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There were a number of problems that needed to be addresses with the results from phase 1. 

1 There were 16 harmonics x 2 seconds x 10 windows per note. This required 320 

coefficients to be collected per note or 960 coefficients in total for three notes. This 

took at least two full days of tedious work. 

2. The harmonic coefficients were collected from Audacity and were of low resolution. 

3. There was a ‘slap’ audible between windows. 

4. Because a ready-made piece of software, Audacity, was used to do the analysis I did 

not have a deep understanding of the mathematical process behind the analysis.   

Clearly these problems needed to be addressed in future work. 

 

7.2 Phase 2 

The output of Phase 2 is a series of eight experimental programs that supplied the toolset 

necessary to deal with the deficiencies identified in Phase 1. These programs are described in 

Chapter 5 of this report. 

 

7.3 Phase 3 
For the third phase of this project, I have written my own software for analysis and synthesis. 

I used these programs to synthesize Beethoven’s ‘Ode To Joy’. I chose ‘Ode To Joy’ because 

it has four distinct motifs, one for each instrument, it is well known and has a simple melody. 

The piano open has the first motif, the guitar has the second, the recorder has the third and the 

ukulele has the fourth. The piano closed plays the accompaniment all the way through. 

 

 

Figure 16  Ode To Joy 
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8. Conclusions 

8.2 General Conclusions 
From this project, I conclude that it is possible to reproduce musical instrument timbre using Short 

Time Discrete Fourier Analysis. This means that music can be stored and transmitted in files that are 

perhaps 1,000 smaller that the equivalent .wav file. More importantly the music can be modified by 

the device playing the software. For example a user could pick the instruments or the software could 

change the tempo at a critical part of a game. 

8.2 What I Learned 
During this project I have learned a lot about many different things. Here are a few of them: 

 How timbre works; from both a musical and scientific perspective. 

 Mathematics; geometry and complex numbers mainly. 

 Python programming, JSON and web development in HTML.  

 The physics of sound. 

 Sine waves and Fourier analysis. 

 Information Theory including noise and analog and digital signals. 

 Musical theory, especially in scales and fifths. 

 Report writing. 

 Presentation skills. 

This project has taught me a lot about music from a scientific perspective, one I would not 

have seen before. I now understand why instruments sound the way they do, and why a 

perfect fifth is not perfect. I have also improved my coding skills in Python. Many of the life 

lessons I learned cannot be taught in a classroom. I strongly believe that this project has 

improved not only my science aptitude, but I am also a better coder, musician and 

mathematician as a result. 
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8.2 Further Work 
8.2.1 Overview 

I have decided that I am going to continue to study the subject matter of technology and 

music for the rest of my secondary education. This project is phase 2 of that study. The 

eventual objective is to develop a coding language called Music Markup Language (MML) 

that one could code music in the same way one can easily code a website in HTML. This is 

useful for instrumentals or backing tracks, and very useful for games as one could change the 

music tempo or timbre in sync with the game action. All of this would be imbedded into the 

code for the game. An MML file would be tiny compared to the size of an mp3 or a wav file 

that it could generate. This would be very useful to reduce the bandwidth required for playing 

online games.  

8.2.2 Developing MJSON 
At present, this project belongs in the Chemical, Physical and Mathematical Sciences in most 

Irish science fairs. However, when I begin to develop MML, it will switch to the Technology 

category. Sometime in the near future, I plan to develop MML from the ground up. 
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Appendices 

A.1 Experiment001- Python and Complex Numbers 
############################################################ 

# Experiment 1:             Revision Date: Sun, 5 Jul 2015 

# How Python handles Complex Numbers. 

# Proving that Complex multiplication yields a rotation. 

# Sarah Kate Sweeney 

############################################################ 

import math 

 

theta = math.pi/6 

sin_theta = math.sin(theta) 

cos_theta = math.cos(theta) 

print theta, cos_theta, sin_theta 

 

a = cos_theta + 1j*sin_theta 

print a 

 

a *= a 

print a 

 

######################################################### 

# Results 

# 0.523598775598 0.866025403784 0.5 

# (0.866025403784+0.5j) 

# (0.5+0.866025403784j) 

######################################################### 

# Since the Cos of 30 degrees = Sin of 60 degrees 

# and the Sin of 30 degrees = Cos of 60 degrees 

# this proves that a squared is a rotation. 

######################################################### 
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A.2 Experiment002- FFT Analysis of a square wave 
############################################################### 

# Experiment 2:             Revision Date: Sun 25 Oct 2015 

# Using numpy to do an FFT. 

# Proving that a0 is 0 for a function centered  on x axis. 

# Sarah Kate Sweeney 

################################################################ 

 

import numpy.fft as np 

from pylab import plot, show, subplot, specgram 

 

signal = [1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1] 

F = np.fft(signal) 

print F 

print 

print abs(F) 

 

subplot(411) 

plot(signal) 

subplot(412) 

plot(abs(F)) 

 

signal = [2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0] 

F = np.fft(signal) 

print F 

print abs(F) 

 

subplot(413) 

plot(signal) 

subplot(414) 

plot(abs(F)) 

show() 

 

###########################################################################

# 

#   Results:                                                                    

# 

########################################################################### 

#  The Complex Fourier Coefficients of a square Wave from 1 to -1               

# 

########################################################################### 

# [ 0. +0.j       2.-10.05467898j    0. +0.j       2. -2.99321153j 

#   0. +0.j       2. -1.33635728j    0. +0.j       2. -0.39782473j 

#   0. +0.j       2. +0.39782473j    0. +0.j       2. +1.33635728j 

#   0. +0.j       2. +2.99321153j    0. +0.j       2.+10.05467898j] 

 

########################################################################### 

#  The Absolute Value Fourier Coefficients of a square Wave from 1 to -1        

# 

########################################################################### 

# [ 0.            10.25166179        0.            3.59990489 

#   0.             2.40537955        0.            2.03918232 

#   0.             2.03918232        0.            2.40537955 

#   0.             3.59990489        0.           10.25166179] 

 

########################################################################### 

#  The Complex Fourier Coefficients of a square Wave from 2 to 0                

# 

####################################################################### 

# [16. +0.j         2.-10.05467898j   0. +0.j           2. -2.99321153j 
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#   0. +0.j         2. -1.33635728j   0. +0.j           2. -0.39782473j 

#   0. +0.j         2. +0.39782473j   0. +0.j           2. +1.33635728j 

#   0. +0.j         2. +2.99321153j   0. +0.j           2.+10.05467898j] 

 

########################################################################## 

#  The Absolute Value Fourier Coefficients of a square Wave from 2 to 0        

# 

######################################################################### 

# [16.          10.25166179          0.           3.59990489 

#   0.           2.40537955          0.           2.03918232 

#   0.           2.03918232          0.           2.40537955 

#   0.           3.59990489          0.          10.25166179] 

########################################################################## 
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A.3 Experiment003- Synthesis of a square wave  
####################################################################### 

# Experiment 3:    Revision Date: Sun 25 Oct 2015 

# Create audible .wav files. 

# Proving that phase shift is inaudible 

# Sarah Kate Sweeney 

####################################################################### 

import math 

from pylab import plot, show, subplot, specgram 

import wave 

import struct 

 

f = 440                                 # Frequency A4 

w = 2.0 * math.pi * f                   # Angular Velocity 

a1 = math.sqrt(1.0/(2.0 * 1.0 * 1.0))   # Fundamental real 

b1 = a1                                 # Fundamental imaginary pi/4 

r1 = abs(a1 + 1j * b1) 

a3 = math.sqrt(1.0/(2.0 * 3.0 * 3.0))   # Third harmonic real 

b3 = a3                                 # Third harmonic imaginary pi/4 

r3 = abs(a3 + 1j * b3) 

a5 = math.sqrt(1.0/(2.0 * 5.0 * 5.0))   # Fifth harmonic real 

b5 = a5                                 # Fifth harmonic imaginary pi/4 

r5 = abs(a5 + 1j * b5) 

a7 = math.sqrt(1.0/(2.0 * 7.0 * 7.0))   # Seventh harmonic real 

b7 = a7                                 # Seventh harmonic imaginary pi/4 

r7 = abs(a7 + 1j * b7) 

 

X = [] 

Xshort = [] 

Y = [] 

Yshort = [] 

 

# Open wav file 

music_output = wave.open('experiment003.wav', 'w') 

music_output.setparams((2, 2, 44100, 0, 'NONE', 'not compressed')) 

 

# For loop to add up squiggly wave 

for sample in range(0, 44100): 

    t = sample/44100.00 

    y = (a1*math.sin(w*t) + b1*math.cos(w*t)) + (a3*math.sin(3*w*t) + 

b3*math.cos(3*w*t)) + (a5*math.sin(5*w*t) + \ 

        b5*math.cos(5*w*t)) + (a7*math.sin(7*w*t) + b7*math.cos(7*w*t)) 

    X.append(t) 

    Y.append(y) 

    if sample < 500: 

        Xshort.append(t) 

        Yshort.append(y) 

    y=int(y*10000) 

    #Process wav file 

    packed_value = struct.pack('h', y) 

    music_output.writeframes(packed_value) 

    music_output.writeframes(packed_value) 

 

subplot(211) 

plot(Xshort,Yshort) 
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X = [] 

Xshort = [] 

Y = [] 

Yshort = [] 

 

for sample in range (0,44100): 

    packed_value = struct.pack('h', 0) 

    music_output.writeframes(packed_value) 

    music_output.writeframes(packed_value) 

 

# For loop to add up square wave 

for sample in range(0, 44100): 

    t = sample/44100.00 

    y = (r1*math.sin(w*t)) + (r3*math.sin(3*w*t)) + (r5*math.sin(5*w*t)) + 

(r7*math.sin(7*w*t)) 

    X.append(t) 

    Y.append(y) 

    if sample < 500: 

        Xshort.append(t) 

        Yshort.append(y) 

    y=int(y*10000) 

    #Process wav file 

    packed_value = struct.pack('h', y) 

    music_output.writeframes(packed_value) 

    music_output.writeframes(packed_value) 

 

music_output.close() 

 

# Plot and display graph 

subplot(212) 

plot(Xshort, Yshort) 

show() 
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A.4 Experiment004- Reading a .wav file 
####################################################################### 

# Experiment 4:    Revision Date: Sun 25 Oct 2015 

# Reading a wav file 

# Sarah Kate Sweeney 

####################################################################### 

 

import scipy.io.wavfile as wavfile 

 

rate,data=wavfile.read('recorder.wav') 

 

print data[:5] 

print rate 

 

########################################################### 

# Results 

########################################################### 

# The first 5 stereo values from the wav file 

########################################################### 

# [[   0    0] 

# [3731 3731] 

# [6493 6493] 

# [8400 8400] 

# [9997 9997]] 

########################################################### 

# Sample Rate 

########################################################### 

# 44100 

########################################################### 
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A.5 Experiment005- Creating a spectrogram 
####################################################################### 

# Experiment 5:    Revision Date: Sun 25 Oct 2015  

# Creating a spectrogram. 

# To compare a real and synthesised note. 

# Sarah Kate Sweeney 

####################################################################### 

from scipy.io.wavfile import read, write 

from pylab import plot, show, subplot, specgram 

 

rate, datastereo = read('results.wav')   # reading 

 

#  data = [0] * (len(datastereo)) 

data = [0] * 60000 

 

for n in range (60000): 

    data[n] = datastereo[n, 0] * 2 

 

 

subplot(311) 

plot(range(len(data)), data) 

#  NFFT is the number of data points used in each block for the FFT 

#  and noverlap is the number of points of overlap between blocks 

subplot(312) 

specgram(data, NFFT=512, noverlap=0) 

subplot(313) 

specgram(data, NFFT=1024, noverlap=0) 

 

show() 
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A.6 Experiment006- JSON object 
###################################################################### 

# Experiment 006           Date 2nd Dec 2015 

# 

# Puts a dict into a JSON object then reads it back into a dict 

# 

###################################################################### 

 

import json 

 

before_dict = {'noteA': {0: 22000, 1: 16000, 2: 12000}, 

               'noteB': {0: 20000, 1: 14000, 2: 11000}} 

print before_dict 

 

json_data = json.dumps(before_dict) 

print json_data 

 

after_dict = json.loads(json_data) 

print after_dict 

 

print after_dict['noteB'] 

print after_dict['noteB']['1'] 

 

########################################################################### 

# {'noteA': {0: 22000, 1: 16000, 2: 12000}, 'noteB': {0: 20000, 1: 14000, 

2: 11000}} 

# {"noteA": {"0": 22000, "1": 16000, "2": 12000}, "noteB": {"0": 20000, 

"1": 14000, "2": 11000}} 

# {u'noteA': {u'1': 16000, u'0': 22000, u'2': 12000}, u'noteB': {u'1': 

14000, u'0': 20000, u'2': 11000}} 

# {u'1': 14000, u'0': 20000, u'2': 11000} 

# 14000 

########################################################################## 
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A.7 Experiment007- Outputting Data to a .wav file 
########################################### 

## Experiment 7          November 12th 2015 

## Export WAV file 

########################################### 

 

import wave 

import struct 

 

# Open wav file 

music_output = wave.open('experiment007.wav', 'w') 

music_output.setparams((2, 2, 44100, 0, 'NONE', 'not compressed')) 

 

# Frequency = 44,100 / 24 = 1.8375 kHz 

signal = [10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 

10000, 10000, 10000, 

     -10000, -10000, -10000, -10000, -10000, -10000, -10000, -10000, -

10000, -10000, -10000, -10000] 

 

# 10,000 cycles = 5.44 seconds 

signal *= 10000 

 

#   Process wav file 

for i in range(0, len(signal)): 

    packed_value = struct.pack('h', signal[i]) 

    music_output.writeframes(packed_value) 

    music_output.writeframes(packed_value) 

 

music_output.close() 
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A.8 Experiment008- DFT and IDFT  
################################################################### 

# Experiment 008    Revision Date: Sun 25 Oct 2015 

# Perform an FT 

# Sarah Kate Sweeney 

################################################################### 

 

import math 

import numpy.fft 

 

 

def dft(f_in): 

    F_in = [] 

    N = len(f_in) 

    for k in range(0, N): 

        Ftemp = 0 

        for n in range(0, N): 

            Ftemp += (f_in[n] * math.cos(2*n*math.pi*k/N)) - (1j*f_in[n] * 

math.sin(2*n*math.pi*k/N)) 

        F_in.append(Ftemp) 

    return F_in 

 

 

def idft(F_in): 

    f_in = [] 

    N = len(F_in) 

    for n in range(0, N): 

        ftemp = 0 

        for k in range(0, N): 

            ftemp += (F_in[k].real * math.cos(2*n*math.pi*k/N)) - 

(F_in[k].imag * math.sin(2*n*math.pi*k/N)) 

        f_in.append(round(ftemp/N)) 

    return f_in 

 

 

f = [0, 5, -2, 4, 3, 8, 3, 3, 0, -3, -3, -3, -3, -4, -5, 2, 7] 

F = dft(f) 

nF = numpy.fft.fft(f) 

 

print len(f), f 

print len(F), F 

print len(nF), nF 

 

f = idft(F) 

 

print len(f), f 
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######################################################################### 

#   Results: 

# 17 [0, 5, -2, 4, 3, 8, 3, 3, 0, -3, -3, -3, -3, -4, -5, 2, 7] 

# 17 [(12+0j), (12.232264386303726-30.687369918596566j), 

#    (3.405212375849918+14.87833871961477j), 

(12.851192352366573+11.058421190976881j), 

#    (0.46007610144805644+7.715389988173088j), (-7.575664743143951-

0.993300929005895j), 

#    (-8.189744000238928-0.6935734094248822j), (-4.2088892346013544-

9.822734337956419j), 

#    (-14.974447237984048-7.290448671589815j), (-

14.974447237984048+7.290448671589817j), 

#    (-4.20888923460146+9.822734337956376j), (-

8.189744000238864+0.693573409424725j), 

#    (-7.575664743143901+0.993300929005847j), (0.46007610144800215-

7.715389988173072j), 

#    (12.851192352366615-11.058421190976851j), (3.4052123758500445-

14.878338719614746j), 

#    (12.232264386303658+30.687369918596595j)] 

# 17 [ 12.00000000 +0.j          12.23226439-30.68736992j 

#   3.40521238+14.87833872j  12.85119235+11.05842119j 

#   0.46007610 +7.71538999j  -7.57566474 -0.99330093j 

#  -8.18974400 -0.69357341j  -4.20888923 -9.82273434j 

# -14.97444724 -7.29044867j -14.97444724 +7.29044867j 

#  -4.20888923 +9.82273434j  -8.18974400 +0.69357341j 

#  -7.57566474 +0.99330093j   0.46007610 -7.71538999j 

#  12.85119235-11.05842119j   3.40521238-14.87833872j 

#  12.23226439+30.68736992j] 

# 17 [0.0, 5.0, -2.0, 4.0, 3.0, 8.0, 3.0, 3.0, 0.0, -3.0, -3.0, -3.0, -3.0, 

-4.0, -5.0, 2.0, 7.0] 

########################################################################## 
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A.9 Analysis Program 
################################################################# 

# Analyse:                  Revision Date:  Sun 20 Dec 2015 

# Analysing the imported signal. 

################################################################# 

 

import scipy.io.wavfile as wavfile 

import numpy.fft as np 

import json 

 

samples = 441000    # Samples per note 

notes = 88          # Number of notes to collect 

windows = 100       # 100 Windows in the sample 

resolution = 10     # Gap between buckets in Hz 

harmonics = 20      # Number of harmonics to collect 

 

 

################################################################## 

# harmonic_calculate   (Harmonic Calculator 

# Returns the freq of a particular harmonic for a particular note 

################################################################## 

 

# Returns frequency for 88 (0 to 87) notes and  20 ( fundamental and 19 ) 

harmonics 

# The resolution is the separation between buckets 100ms window = 10Hz 

separation 

# The frequency is rounded to the nearest bucket 

# Def is a function that can be called later. 

 

def frequency_rounded(note, harmonic): 

    fundamental = 27.5 * 1.0594630944 ** note 

    frequency = fundamental * (harmonic+1) 

    answer = resolution * int((frequency + (resolution/2))/resolution) 

    return answer 

 

 

def note_analyse(): 

    for w in range(0, windows): 

 

        # First get the Fourier transform of the window. 

        F = np.fft(data[n * 441000 + w * 4410: (n * 441000 + (w + 1) * 

4410)]) 

 

        # Remove the complex numbers by getting the absolute value. 

        Fabs = abs(F) 
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        # Now get the amplitude of the fundamental and harmonics 

        hardata = {} 

        for h in range(0, harmonics): 

            bucketf = frequency_rounded(n + start_offset, h) 

            if bucketf > 18000: 

# use amplitude 0 for Shannon Nyquist cutoff 

                hardata["harmonic{0}".format(h)] = 0 

            else: 

                amplitude = Fabs[bucketf/resolution] 

 

                # Allow for tuning variability by looking for local maximum 

within 2% of the frequency 

                delta = int((bucketf * 0.02)/10) 

                for d in range(-delta, delta): 

                    if Fabs[d + bucketf/resolution] > amplitude: 

                        amplitude = Fabs[d + bucketf/resolution] 

 

                hardata["harmonic{0}".format(h)] = amplitude 

        windata["window{0}".format(w)] = hardata 

 

# End of function declarations, program starts here. 

# Analyse each instrument separately within the loop 

 

instruments = [ 

    ["../ReferenceNotes/pianoOpen.wav", 88, 0, 

"../Coefficients/pianoOpen.json"], 

    ["../ReferenceNotes/pianoClosed.wav", 88, 0, 

"../Coefficients/pianoClosed.json"], 

    ["../ReferenceNotes/guitarA.wav", 13, 23, 

"../Coefficients/guitarA.json"], 

    ["../ReferenceNotes/guitarB.wav", 12, 25, 

"../Coefficients/guitarB.json"], 

    ["../ReferenceNotes/guitarD.wav", 12, 13, 

"../Coefficients/guitarD.json"], 

    ["../ReferenceNotes/guitarG.wav", 12, 45, 

"../Coefficients/guitarG.json"], 

    ["../ReferenceNotes/guitarHighE.wav", 12, 54, 

"../Coefficients/guitarHighE.json"], 

    ["../ReferenceNotes/guitarLowE.wav", 12, 30, 

"../Coefficients/guitarLowE.json"], 

    ["../ReferenceNotes/recorder.wav", 13, 50, 

"../Coefficients/recorder.json"], 

    ["../ReferenceNotes/ukulele.wav", 23, 45, 

"../Coefficients/ukulele.json"] 

    ] 
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for i in range(len(instruments)): 

 

    # gather the variables 

    instrument = instruments[i] 

    notedata = {} 

    input_wav = instrument[0] 

    note_count = instrument[1] 

    start_offset = instrument[2] 

    output_json = instrument[3] 

 

    # read the Reference Notes 

    rate, data = wavfile.read(instrument[0]) 

    for n in range(1, note_count + 1): 

        windata = {} 

        note_analyse() 

        notedata["note{0}".format(n + start_offset)] = windata 

 

    # save the Fourier Coefficients to json file 

    with open(output_json, 'w') as outfile: 

        json.dump(notedata, outfile)  
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A.10 Synthesis Program 
################################################################# 

# Synth :                  Revision Date:  Sat 22 Dec 2015 

# Synthesising Music. 

################################################################# 

 

import json 

import wave 

import math 

import struct 

 

harmonics = 20 

 

harmonic_amplitudes = [[0 for harmonic in range(harmonics)] for window in 

range(100)] 

 

 

def get_harmonic_amplitudes(): 

    if instrument == 'pianoOpen': 

        data = open('../Coefficients/pianoOpen.json', 'r') 

    elif instrument == "pianoClosed": 

        data = open('../Coefficients/pianoClosed.json', 'r') 

    elif instrument == "guitarA": 

        data = open('../Coefficients/guitarA.json', 'r') 

    elif instrument == "guitarB": 

        data = open('../Coefficients/guitarB.json', 'r') 

    elif instrument == "guitarD": 

        data = open('../Coefficients/guitarD.json', 'r') 

    elif instrument == "guitarG": 

        data = open('../Coefficients/guitarG.json', 'r') 

    elif instrument == "guitarHighE": 

        data = open('../Coefficients/guitarHighE.json', 'r') 

    elif instrument == "guitarLowE": 

        data = open('../Coefficients/guitarLowE.json', 'r') 

    elif instrument == "recorder": 

        data = open('../Coefficients/recorder.json', 'r') 

    elif instrument == "ukulele": 

        data = open('../Coefficients/ukulele.json', 'r') 

    else: 

        data = open('../Coefficients/pianoOpen.json', 'r') 

 

    json_data = data.read() 

    instrument_data = json.loads(json_data) 

    nte_data = instrument_data["note{0}".format(note)] 
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    for win in range(0, 100): 

        for har in range(0, harmonics): 

            win_data = nte_data["window{0}".format(win)] 

            har_data = win_data["harmonic{0}".format(har)] 

            harmonic_amplitudes[win][har] = har_data 

 

    return harmonic_amplitudes 

 

 

# Read the song to be synthesised 

song_file = open('../SheetMusic/music.json', 'r') 

song_json = song_file.read() 

song_score = json.loads(song_json) 

 

# Find the length of the song 

note_count, song_length = 0, 0 

for each_note in song_score: 

    print each_note, note_count, song_length 

    note_data = song_score["note{0}".format(note_count)] 

    if note_data["end"] > song_length: 

        song_length = note_data["end"] 

    note_count += 1 

 

print note_count, "notes    ", song_length / 100, "seconds" 

 

# Set all samples in the wav file to zero 

song_left = [] 

song_right = [] 

for i in range((song_length * 441) + 441):  # Extra 10ms for slap tail 

    song_left.append(0) 

    song_right.append(0) 

 

# Process notes one by one 

 

for n in range(0, note_count): 

    note_data = song_score["note{0}".format(n)] 

    note = note_data["note"] 

    instrument = note_data["instrument"] 

    loudness = note_data["loudness"] 

    start_note = note_data["start"] * 441 

    end_note = note_data["end"] * 441 

    channel = note_data["channel"] 

 

    get_harmonic_amplitudes() 

 

    note_end = 0 

    for w in range(0, int((end_note - start_note)/4410)): 

        print "Note ", n, "Window  ", w 

 

        start_window = start_note + w * 4410            # Used to create 

tail to elimenate slap 

        end_window = start_note + (w + 1) * 4410 + 441  # Used to create 

tail to elimenate slap 

 

        for h in range(0, harmonics): 

            frequency = int((27.5 * 1.0594630944 ** note)  * (h + 1)) 
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            f2pi = frequency * 2 * math.pi              # Omega = 2 * Pi * 

f 

 

            for sample in range(start_window, end_window): 

                t = sample / float(44100) 

                signal = int(math.sin(f2pi * t) * loudness * 

harmonic_amplitudes[w][h]) 

 

                # If the window is starting then ramp in over 10ms 

                if sample < (start_window + 441): 

                    signal *= ((sample - start_window) / float(441)) 

 

                # If the window is ending then ramp out over 10ms 

                if sample > (end_window - 441): 

                    signal *= ((end_window - sample) / float(441)) 

 

                if channel == "left": 

                    song_left[sample] += signal 

                else: 

                    song_right[sample] += signal 

 

 

# Find the scaling factor to prevent clipping 

 

absolute_max = 0 

for i in range(0, song_length * 441): 

    if abs(song_left[i]) > absolute_max: 

        absolute_max = abs(song_left[i]) 

    if abs(song_right[i]) > absolute_max: 

        absolute_max = abs(song_right[i]) 

 

scale = absolute_max / 28000          # wav = 2**16 = +- 2**15 = -32,768 to 

+ 32,767 

print "Absolute Maximum ", absolute_max, "  Scale  ", scale 

 

 

# Save the wav file to disk 

 

music_output = wave.open('../SynthMusic/music.wav', 'w') 

music_output.setparams((2, 2, 44100, 0, 'NONE', 'not compressed')) 

 

for i in range(0, song_length * 441): 

 

    # Mix a bit of the left with right and visa versa for headphone usage 

    value_left = int(song_left[i] / scale) + int((song_right[i] / scale) * 

0.05) 

    value_right = int(song_right[i] / scale) + int((song_left[i] / scale) * 

0.05) 

 

    packed_value_right = struct.pack('h', value_right) 

    packed_value_left = struct.pack('h', value_left) 

    music_output.writeframes(packed_value_right) 

    music_output.writeframes(packed_value_left) 

 

music_output.close()  
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A.11 Reference Notes 
 

Using a high quality microphone in an acoustic studio at Cork School of Music, I recorded 285 

reference notes for harmonic analysis using a discrete Fourier Transform.  

Instrument Note Count 

Piano Lid Open 88 

Piano Lid Closed 88 

Guitar 78 

Ukulele 23 

Recorder 8 

Total 285 
Figure 17  Reference Note Summary 

  



Sarah Kate Sweeney  BTYSTE 2016 

Page 56 
 

# Note Freq PiOp PiCl GuLE GuA GuB GuD GuG GuHE Ukul Recor 

0 A1 27.5 Yes Yes         

1 As1/Bf1 29.135 Yes Yes         

2 B1 30.868 Yes Yes         

3 C1 32.703 Yes Yes         

4 Cs1/Df1 34.648 Yes Yes         

5 D1 36.708 Yes Yes         

6 Ds1/Ef1 38.891 Yes Yes         

7 E1 41.203 Yes Yes         

8 F1 43.654 Yes Yes         

9 Fs1/Gf1 46.249 Yes Yes         

10 G1 48.999 Yes Yes         

11 Gs1/Af2 51.913 Yes Yes         

12 A2 55 Yes Yes         

13 As2/Bf2 58.27 Yes Yes         

14 B2 61.735 Yes Yes         

15 C2 65.406 Yes Yes         

16 Cs2/Df2 69.296 Yes Yes         

17 D2 73.416 Yes Yes         

18 Ds2/Ef2 77.782 Yes Yes         

19 E2 82.407 Yes Yes         

20 F2 87.307 Yes Yes         

21 Fs2/Gf2 92.499 Yes Yes         

22 G2 97.999 Yes Yes         

23 Gs2/Af3 103.83 Yes Yes         

24 A3 110 Yes Yes  Yes       

25 As3/Bf3 116.54 Yes Yes  Yes       

26 B3 123.47 Yes Yes  Yes       

27 C3 130.81 Yes Yes  Yes       

28 Cs3/Df3 138.59 Yes Yes  Yes       

29 D3 146.83 Yes Yes  Yes       

30 Ds3/Ef3 155.56 Yes Yes  Yes       

31 E3 164.81 Yes Yes Yes Yes       

32 F3 174.61 Yes Yes Yes Yes       

33 Fs3/Gf3 185 Yes Yes Yes Yes       

34 G3 196 Yes Yes Yes Yes       
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35 Gs3/Af4 207.65 Yes Yes Yes Yes       

36 A4 220 Yes Yes Yes Yes       

37 As4/Bf4 233.08 Yes Yes Yes        

38 B4 246.94 Yes Yes Yes  Yes      

39 C4 261.63 Yes Yes Yes  Yes      

40 Cs4/Df4 277.18 Yes Yes Yes  Yes      

41 D4 293.67 Yes Yes Yes  Yes Yes     

42 Ds4/Ef4 311.13 Yes Yes Yes  Yes Yes     

43 E4 329.63 Yes Yes Yes  Yes Yes     

44 F4 349.23 Yes Yes   Yes Yes     

45 Fs4/Gf4 369.99 Yes Yes   Yes Yes     

46 G4 392.00 Yes Yes   Yes Yes Yes    

47 Gs4/Af5 415.3 Yes Yes   Yes Yes Yes  Yes  

48 A5 440 Yes Yes   Yes Yes Yes  Yes  

49 As5/Bf5 466.16 Yes Yes   Yes Yes Yes  Yes  

50 B5 493.88 Yes Yes   Yes Yes Yes  Yes  

51 C5 523.25 Yes Yes    Yes Yes  Yes Yes 

52 Cs5/Df5 554.37 Yes Yes    Yes Yes  Yes Blank 

53 D5 587.33 Yes Yes    Yes Yes  Yes Yes 

54 Ds5/Ef5 622.25 Yes Yes     Yes  Yes Blank 

55 E5 659.26 Yes Yes     Yes Yes Yes Yes 

56 F5 698.46 Yes Yes     Yes Yes Yes Yes 

57 Fs5/Gf5 739.99 Yes Yes     Yes Yes Yes Blank 

58 G5 783.99 Yes Yes     Yes Yes Yes Yes 

59 Gs5/Af6 830.61 Yes Yes      Yes Yes Blank 

60 A6 880 Yes Yes      Yes Yes Yes 

61 As6/Bf6 932.33 Yes Yes      Yes Yes Blank 

62 B6 987.77 Yes Yes      Yes Yes Yes 

63 C6 1046.5 Yes Yes      Yes Yes Yes 

64 Cs6/Df6 1108.7 Yes Yes      Yes Yes  

65 D6 1174.7 Yes Yes      Yes Yes  

66 Ds6/Ef6 1244.5 Yes Yes      Yes Yes  

67 E6 1318.5 Yes Yes      Yes Yes  

68 F6 1396.9 Yes Yes       Yes  

69 Fs6/Gf6 1480 Yes Yes       Yes  

70 G6 1568 Yes Yes         
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71 Gs6/Af7 1661.2 Yes Yes         

72 A7 1760 Yes Yes         

73 As7/Bf7 1864.7 Yes Yes         

74 B7 1975.5 Yes Yes         

75 C7 2093 Yes Yes         

76 Cs7/Df7 2217.5 Yes Yes         

77 D7 2349.3 Yes Yes         

78 Ds7/Ef7 2489 Yes Yes         

79 E7 2637 Yes Yes         

80 F7 2793 Yes Yes         

81 Fs7/Gf7 2960 Yes Yes         

82 G7 3136 Yes Yes         

83 Gs7/Af8 3324.4 Yes Yes         

84 A8 3520 Yes Yes         

85 As8/Bf8 3729.3 Yes Yes         

86 B8 3951.1 Yes Yes         

87 C8 4186 Yes Yes         

Figure 18 Reference Note Detail 

 


